
Online Resources Documentation
Chemical Structure and Reactivity

Jamie Wiles

September 1, 2016

Contents

1 Introduction 1

2 JSXgraph resources 1
2.1 Background . 1
2.2 The fundamentals . 2

2.2.1 Basic set-up . 2
2.2.2 Producing lines, points, graphs etc . 2

2.3 Interactive elements . 3
2.3.1 Sliders . 3
2.3.2 Radio groups, check-boxes and menus . 3

2.4 Web-links 18.1-18.3: Quantum Mechanical Potentials 4
2.4.1 for loops . 4
2.4.2 Classically allowed/forbidden regions . 5
2.4.3 Radio buttons . 5

2.5 Web-link 12.1: Reaction Profiles . 5
2.5.1 Steady state/pre-eqm solutions . 5
2.5.2 Axis scaling . 6
2.5.3 Energy level cartoon . 6

2.6 Web-links 4.2 & 4.3: 2D Density plots . 6
2.6.1 Improving performance by using 2 boards . 7
2.6.2 Changing the plot type . 7

2.7 Web-links 7.1 & 7.2: Boltzmann and Gibbs . 7
2.8 Web-link 2.3 Hydrogen-like wavefunctions . 8

2.8.1 Multiple boards . 8
2.8.2 Changing the scales . 8
2.8.3 Dropdown menus . 9
2.8.4 Toggling plots . 9
2.8.5 Radio Buttons . 9

2.9 Online Resources . 9

3 JSmol resources 10
3.1 Background . 10
3.2 The fundamentals . 10

i

3.3 Iso-surfaces . 12
3.4 Online Resources . 12

4 Atomic Orbitals as Cubes 12
4.1 Basics . 12
4.2 Animation . 13
4.3 Online Resources . 13

1 Introduction

This documentation is designed to help someone to understand what is going on in the code for the
web-links, in case something goes wrong in the future or in case anything needs to be changed. It
is not intended as a comprehensive guide on how to use JSmol, JSXgraph and jQuery: for this, one
must refer to their respective documentations. This document simply tries to explain why I have
done certain things in certain ways, so that whichever poor soul has to deal with my code in the
future can see some of the method behind the madness1. (And so that they don’t fall into the same
traps as I did!)

The web-links for this book fall into three main categories: 3-D models of molecules, iso-surface plots,
and interactive graphs. Web-links 2.2 and 14.1 are combinations of these, and web-link 2.1 is rather
different to all the others, essentially being an interactive image slideshow (see §4 for details). The
molecular models and isosurfaces are both created using the JSmol JavaScript library and HTML5,
whereas the interactive graphs were created using the JSXgraph library. Details on how both these
types of web-link were implemented can be found in §3 & §2 respectively.

2 JSXgraph resources

2.1 Background

JSXgraph is a JavaScript library for producing interactive graphs on a web-page. It is a relatively
new library, meaning the documentation is a bit sparse and finding online support when trying to
do something a little more complicated can be difficult. However, it does exactly what we need it
to for all of these resources and hopefully the documentation will continue to improve as the library
matures.

1Also, I am aiming this document towards someone with a similar computing ability as I had when I started
developing these resources: a NatSci student (Part II Physics) with some programming experience but limited
experience in web development and JavaScript. If you’re reading this as a more seasoned programmer, I can only
apologise and hope I haven’t said or done anything too stupid...

1

2.2 The fundamentals

2.2.1 Basic set-up

To include JSXgraph on a webpage, the documentation says you need to use 2 files. The first is the
jsxgraphcore.js JavaScript source file and the other is the jsxgraph.css CSS file. However, in
these web-links I did not link to the CSS file - this is because doing so produces a blue box around
the graph which doesn’t look that great. It seems though that the orc.css file sorts out the fonts
etc. in the JSXgraph app so everything still works fine without jsxgraph.css.

To make the JSXgraph app, you need three things:

1. The link to the JavaScript source,

<script>jsxgraphcore.js</script>

2. Some JavaScript, including at least one JSXgraph board, viz.

var board = JXG.JSXGraph.initBoard("GraphName", board_attributes);

3. A reference to the JSXgraph in the HTML, including the same name as you used when making
the board in the first place:

<div id="GraphName" class="jxgbox" style="width:600px; height:600px;"></div>

Note: The JavaScript for the JSXgraph must come after the JSXgraph <div>, otherwise it won’t
work. So the script cannot be put into the header, as is the case for all of the JSmol based web-links.

You may have noticed the mysterious variable, board attributes, in the code for making the
JSXgraph board. What is this? It’s basically just an object, which contains all of the properties of
the board itself (c.f. the Info object used in the JSmol, §3.2). For full details of all the attributes
you can choose from, refer to the JSXgraph documentation. An example of a typical set of
attributes used in these weblinks is given below:

1 var board_attributes = {

2 boundingbox: [-12, 22, 12, -3], //two coordinates: [upper-left, lower-right]

3 axis:false, //don’t show the default axes - they don’t look very nice

4 grid:false, //also don’t show the grid

5 showCopyright:false, //don’t show JSXgraph logos etc.

6 showNavigation:false,//don’t show the navbar - we don’t ever need it

7 };

These attributes could of course just be typed directly into the JXG.JSXGraph.initBoard function,
but I found that saving them as variables looks neater and makes it easier to edit. Plus, when
multiple objects share the same/similar properties (e.g. the x and y axis), it is easier to refer to the
same object rather than typing out the same attributes twice.

2.2.2 Producing lines, points, graphs etc

Producing lines, graphs etc. is pretty straightforward, though there are some subtleties worth noting.

For example, to produce a line the syntax is:

2

http://jsxgraph.uni-bayreuth.de/docs/symbols/JXG.Board.html

var line = board.create("line", [[x1, y1],[x2,y2]], line_attributes)

where line attributes is an object containing all the basic properties of the line (c.f.
board attributes). These properties include the width of the line, its colour, whether it should
end in an arrow etc... (look at the documentation!). Note that I’ve used board.create, because I
gave the board the rather inventive variable name, board. If you called your board something more
exciting, like brd, you’d have to use brd.create instead.

Points, and text labels can be produced in a similar way: check out the documentation. Functions are
slightly more tricky though, so I’ll include an example below. This plots a graph of f(x) = sinc(x)
between −π/2 and π/2. Note that the function you are plotting, f(x), needs to be included as a
function of x (this is reasonably intuitive!)

1 var pi = Math.pi;

2 var graph = board.create("functiongraph", [function(x){return Math.sin(x)/x}, -pi/2,

pi/2], attributes)↪→

2.3 Interactive elements

2.3.1 Sliders

All of the JSXgraph weblinks are interactive in some way, and most of them use a slider. These
sliders often the positions of lines, the nature of functions and the region in which they are plotted.
A slider is produced using

var slider = board.create("slider", [[starting coordinate of the slider],[ending

coordinate],[minimum value, starting value, maximum value]])↪→

and its value can be returned using slider.Value().

Important: if you want the x coordinate of a point to take the value of a slider (say), simply using
slider.Value() as the x coorinate will not work. Whenever you want a something to change
with the slider in real time, you MUST include it as function(){return slider.Value()}

or similar.

2.3.2 Radio groups, check-boxes and menus

Radio groups and drop-down menus aren’t included natively in JSXgraph. However, this can be
worked around by creating a ‘text’ object, and then inserting the HTML for a check-box/radiogroup
in the place of the text, i.e.

1 board.create("text", [0, 1, "Hello"])

puts the word ’Hello’ on the board at (0, 1) whilst

1 board.create("text", [0, 1, ’<form action="">

2 <input type="radio" name="greet" value="hello"> Hello

3

3 <input type="radio" name=""greet" value="goodbye"> Goodbye

4 </form>’])

produces ‘Hello’ and ‘Goodbye’ radio buttons at (0, 1). Note that the entire HTML is included as a
string: this means that you should either need to use ‘’ around the outside of the HTML and “” on
the inside (say) to make this work properly.

Alternatively, you can just place the interactive elements outside of the HTML. However, you get
better control over the visuals of the app if you place them on the inside.

2.4 Web-links 18.1-18.3: Quantum Mechanical Potentials

Here I describe some of the online resources in more detail, and any particular difficulties I encountered
and how I got around them.

2.4.1 for loops

These three web-links plot the wavefunctions and energy levels for different types of QM potential:
the infinite square well, the quantum harmonic oscillator and the Morse potential. The nature of the
wells can be altered with sliders, e.g. the width of the square well, the depth of the Morse potential
or the value of k/m for the QHO.

In three all web-links, the wavefunctions and energy levels are all functions of n (or υ), and so it
makes sense to plot both of these using for loops. However, I had major problems getting these to
work dynamically with the sliders. For example, if you try plotting the each energy level for loop
that counts up to 15, then to begin with, everything works fine. However, once you change something
with the slider, all of the levels default to n = 15, which is rather a problem.

In the end, I found that the solution to the problem goes as follows:

1. Make a function that takes one parameter, n

2. In this function, plot the nth energy level and/or the nth wavefunction

3. Make a for loop that calls this function with different values of n.

1 var make_level = function(n) {

2 board.create("line", stuff);

3 }

4

5 for(n=0; n<15; n++) {

6 make_level(n);

7 }

For some reason, this is now perfectly well behaved when you change things with the sliders.

4

2.4.2 Classically allowed/forbidden regions

In web-links 18.2 and 18.3 the wavefunction is coloured blue or red depending on whether it is in a
classically allowed or forbidden region. Unfortunately there is no way of giving a region of a graph
a different color in JSXgraph so instead 3 separate plots had to be produced: the classically allowed
region of the wavefunction and the inner and outer tails. For the Morse oscillator (18.4), there are
some if/else statements in the bounds of the graph: this is because in some cases the classically
allowed region may extend out of the graphing region making it look a bit crap.

2.4.3 Radio buttons

These three apps use radio buttons to switch between wavefunctions, squared wavefunctions and
energy levels only. The radio buttons are included in the HTML, not the JSXgraph board itself: this
is because when I made these I was not aware of the trick described in §2.3.2.

The radio buttons call the function changePlots which takes one parameter to tell it which option
is selected. The function deletes all of the wavefunctions/squared wavefunctions and then replots
them in the desired form. The wavefunctions / squared wavefunctions are saved into arrays: this
is because they can then be all be deleted at once using board.removeOject(array) rather than
having to delete them one by one.

2.5 Web-link 12.1: Reaction Profiles

2.5.1 Steady state/pre-eqm solutions

In this web-link the analytic solutions for the A←→B−→C reaction are shown, and the solutions
given by the steady-state and pre-eqm approximations can be toggled on or off using checkboxes.
These checkboxes both call a function which increments a counter, i or j. Depending on whether i is
odd or even, the function will either delete the steady-state graphs or create them. Both checkboxes
are independent and so the user can choose to display both approximations, only one or neither.

In this app, the solutions are all taken to be of the form

ci(t) = aije
−λjt

where the aij and λj are constants. Exact expressions for these can be found using the initial
conditions that c1(0) = 1, c2,3(0) = 0 and conservation of mass. Using the steady state or pre-eqm
approximations leads to simplified expressions for the aij and λj. However, in this app only the
simplified aij: the original exact expressions for λj are kept. This is because the old Java
applet did it this way, and using the approximations for the λj gives some really messy results in
certain limits.

5

2.5.2 Axis scaling

In this web-link the user can change the horizontal scale using a slider. This slider doesn’t actually
change the x-range, as this would also move the sliders. Instead, it introduces a scale factor into
the graph, f(x) → f(2x) say, that squashes/stretches the graph. The x-ticks and their labels are
produced manually and are shifted along with the slider to give the illusion of the x scale being
changed.

2.5.3 Energy level cartoon

This cartoon is very schematic. It illustrates how the activation energy for a step in the reaction
goes as the log of the rate constant. I fudged in constants and offsets in order to make the cartoon
look ‘right’.

The curves between levels are made using a curve fit. JSXgraph has many types of curve fit, though
I found that some looked a little misleading as they tried to smooth things out a bit too much. I
opted for the JXG.Math.Numerics.bezier curve fit. This takes in an array of JSXgraph points (i.e.
p[0] = board.create("point", ...); p[1] = board.create("point", ...); ...) and will
then draw a curve fit going through every third point (p[0], p[3], ...) with intermediate
points shaping the curve. I placed these two intermediates right above the first point and right next
to the third: this made the curve look about right.

2.6 Web-links 4.2 & 4.3: 2D Density plots

Both these web-links contain MO diagrams, 1D plots of the wavefunctions and also 2D density plots.
These density plots were a bit of a nightmare, but I used a few workarounds to get a balance between
performance and functionality.

The density plots are produced by producing an array of squares. These squares are made using the
function make 2D MOs(nx, ny, j), which has three arguments:

1. nx, the number of places from the centre in the x direction (integer, positive or negative);

2. ny, the number of places from the centre in the y direction (integer, positive or negative);

3. j, the index of the square to store into an array (positive integer)

There are also some variables a and b that are used to scale the whole plot by changing the
size/spacing of the squares.

To make these squares look like a density plot, their opacity is modulated according to the value of
the wavefunction: these are produced by the various opacity functions, which are functions of nx
and ny. This is achieved by setting the attributes opacity & highlightOpacity in the functions
themselves to the opacity functions, viz.

1 board.create("polygon", coords, {opacity:function(){return

Math.abs(opacity_functions1(nx, ny)), ...})↪→

6

Note that these functions can be positive or negative so the mod must be taken before using as an
opacity. However, the sign can be used to determine whether to color the square red (for positive)
or blue (for negative):

1 fillColor:function(){if(opacity_functions2(nx, ny) < 0){return ’blue’}else{return

’red’}}↪→

2.6.1 Improving performance by using 2 boards

It turns out that loading hundred/thousands of squares an dynamically changing their opacity makes
things very slow. In fact, even just having thousands of squares on the board with a static opacity
still makes the rest of the board laggy. I got around this by making two boards, side by side: the
fist with all the sliders and 1D graphs and the second for the density plots. This was quite easy: one
just needs to make two divisions within the same <td></td>, and ensure they have the same height
in pixels. You can make and edit two different boards within the same <script> tags as long as you
give them two different variable names, e.g. board1 & board2.

We want our plots on board 2 to update when the slider is changed on board 1. You can actually
make one board the child of another, meaning that it will be dependant on it and change whenever
you interact with its parent. However, this updates the density plots much too often and so things
still ran rather slow. Instead, I set it so that the density plots only update when the slider is
released, using the event

1 bond_length_slider.on(’up’, function(){board2.update()})

2.6.2 Changing the plot type

The type of plot can be changed using the radio buttons. I experimented with a few ways of changing
the plots, and it seems that the fastest way is to change the function going in to the opacity and
then updating the board. This is done by setting the opacity to the variable opacity1, and setting
this variable to opacity functions1, opacity functions3, or opacity functions5 accordingly.

Originally I used a much slower method and so I including a ‘Loading...’ division in the HTML. This
is displayed whilst the density plot is being changed. I have left this is because reloading can still
take about 1s in Firefox. This was achieved using JavaScript’s setTimeout function and some simple
jQuery to show/hide the necessary divisions.

2.7 Web-links 7.1 & 7.2: Boltzmann and Gibbs

These two are relatively simple, though they both feature a ‘speedometer’ which I should probably
explain.

In 7.1, the speedometer indicates the value of the energy level spacing divided by kBT . It therefore
changes when you move the either the temperature slider or the energy level spacing slider.

7

The way that this works is as follows. The outside of the speedo is constructed using a semicircle
(board.create("semicircle", [left_corner, right_corner])) and the bottom by making a
line. The speedo arrow is then simply another, from the centre of the semicircle to some point on
the outside.

The position of the arrow is determined by the angle it makes from the x axis, φ: its end then has the
coordinates (r cosφ, r sinφ) where r is the semicircle radius (taking the centre to be at the origin).
The angle φ depends on ∆/kBT , and should depend logarithmically so that the speedo dial moves
smoothly. With minimum and maximum values of 0.01 and 100 and a middle value of 1 on the
speedo, a suitable function to convert from ∆/kBT to φ is

φ(∆/kBT) = π/2− π/4 log(∆/kBT)

In the script, this is implemented using the function ratio to rads, which is then called when
making the dial. Similar functions are used in 7.2, though the numbers are different (and are fudged
a bit to get it to look right!)

2.8 Web-link 2.3 Hydrogen-like wavefunctions

This web-link allows you to plot up to 3 different hydrogen wavefunctions (radial part only) or RDFs.
There are a few interesting things to point out on this web-link...

2.8.1 Multiple boards

2 boards are used, one for the graph (board1) and the other for the UI elements (board2). This is so
that the user can change the scale of the graph without the UI elements moving around. The script
board2.addChild(board1); makes the board with the graphs the child of the UI board: this means
that whenever something is changed in the UI panel, the graph panel updates immediately.

2.8.2 Changing the scales

Like web-link 12.1, you can change the x and y scales in this graph using sliders. However, in this
case the actual scaling of the board changes, rather than applying transformations to the graphs.
This is achieved using

1 y_slider.on(’drag’, function(){board1.setBoundingBox([-x_slider.Value()/10,

y_scaling(), x_slider.Value()+x_slider.Value()/10, -y_scaling()/6]); });↪→

2 x_slider.on(’drag’, function(){board1.setBoundingBox([-x_slider.Value()/10,

y_scaling(), x_slider.Value()+x_slider.Value()/10, -y_scaling()/6]); });↪→

The 4 numbers in the setBoundingBox again determine the top left and bottom right coordinates.
I’ve set this up so that the axes don’t move - I thought this would be distracting. The x ticks and y
are also dependant on these sliders so that they stay the same size on the webpage - i.e. when the y
axis is stretched, the x ticks get squashed so they look like they’re the same size.

8

2.8.3 Dropdown menus

I made all the dropdown menus using for loops, to make things concise. However, some things
weren’t 100% compatible with for loops and so the code isn’t as understandable as I might like.
This is the reason for all the if and else’s in the changeN function.

Basically, there are two functions: changeN called when an n dropdown changed and updatePlot

called when an l dropdown changed. Both take in a value(e.g. ”1s”, ”2s”...) and another value,
n = 0, 1, 2 which tells the function which of the three plots is being changed. changeN plots the l = 0
orbital for the value of n chosen and also deletes the l dropdown, remaking is with the new values of
l = 0, ..., n− 1. updatePlot simply updates the plot, but does so using

1 plots[n].Y = function(x){return plot_1s(2*Zeff[n]()*x/1, Zeff[n]())};

I did it this way rather than deleting/creating new plots because I wanted plots that weren’t being
displayed to also be updated, so that once their checkbox was ticked the correct thing would be on
view.

2.8.4 Toggling plots

The plots are toggled using checkboxes and counters, as in the other cases. However, instead of these
deleting the plots or recreating them, they instead toggle the visibility attribute between being false
and true:

1 plots[0].setAttribute({visible: true});

2.8.5 Radio Buttons

The radio buttons switch between plotting radial parts of wavefunctions and the RDF. This is done
by changing the function that all of the graphs refer to: the functions plot 1s, plot 2s etc. Copies of
these functions are saved as the variables orbital 1s. The plot 1s functions can then be redefined
in terms of the orbital 1s functions to toggle between the wavefunctions and RDFs: this is what
the function changeRadialRDF is doing.

2.9 Online Resources

A number of online resources may be useful:

1. The JSXgraph wiki. This gives good explanations on how to implement all of the basic
elements in JSXgraph but doesn’t go into many of the details beyond that. The examples are
reasonably useful though unfortuantely they aren’t very well commented so deciphering them
can be a bit of a task.

2. The JSXgraph documentation. This is the place to go when you want to find out everything
you can do with a JSXgraph object, say a line or a polygon. However, whilst it gives lots of

9

http://jsxgraph.uni-bayreuth.de/wiki/index.php/Documentation
http://jsxgraph.uni-bayreuth.de/docs/index.html

information it doesn’t really go much beyond the specifics, so it isn’t all that helpful as a
starting point. Definitely start with the wiki pages and use this as a supplement when needed.

3. The JSXgraph Google Group forum and the JSXgraph pages on Stack Overflow are quite
useful when you have a specific problem that you need to solve.

3 JSmol resources

3.1 Background

All of the weblinks containing interactive 3-D models of molecules, or iso-surface representations of
atomic/molecular orbitals, were created using JSmol/HTML5. The web-links were previously created
using Jmol, displaying the molecules/orbitals in a Java applet. However, using a Java applet comes
with a number of problems...

1. Google Chrome no longer supports Java, and so Chrome cannot run Jmol applets

2. In order to run the applet on Firefox or IE, one must first add the site domain to the exceptions
list within the ‘Configure Java’ application. This probably isn’t worth the effort.

3. Even once the site is put onto the ’allowed‘ list, a security warning pop-up will still appear
every time you load a new page containing a Jmol app

...and many, many more.

In response to the diminishing support for Java, the makers of Jmol made JSmol, an update to Jmol
that can be run using JavaScript and HTML5 only. Fortunately, they made JSmol such that Jmol
applets could be converted to JSmol with relatively little hassle, and just a few systematic changes
in syntax. The fundamentals of the JSmol syntax are given in §3.2. However, some of the resources
decided that they would rather not be converted into JSmol, and so were a bit of a pain in the arse.
This was due to there being some additional changes in syntax required, (e.g. with the iso-surfaces),
for rather unclear reasons. These annoying details are given later in this section, so hopefully they
won’t cause too much of a headache in the future.

3.2 The fundamentals

In order to include JSmol in a page, you must link to two files. The first is JSmol.min.js, which
can be downloaded from the JSmol website. This JavaScript source should be included in the usual
way: by calling <script src="JSmol.min.js"></script> in the document header. The other file
that must be included is actually a folder, j2s, that is used to covert from Java to JavaScript. This
should actually be referenced in the main JavaScipt code when JSmol ‘applet’ is declared (more on
this later).

Including a JSmol ‘applet’ on a webpage can be done quite elegantly by using jQuery-like syntax2.
In the document <head>er, you first include the usual $(document).ready(function(){}), where

2Note that you don’t actually have to include the jQuery source file to do it like this.

10

https://groups.google.com/forum/##!forum/jsxgraph

the curly braces will contain all of the JSmol functions. This ensures that the webpage doesn’t try
to do anything fancy until the bare bones of the HTML have loaded.

In most of the web-links, I chose to use two selectors: "#main" and "#interactivity". As their
names suggest, the "#main" contains the main JSmol application (or, to put it properly, the Jmol
JavaScript object) and the "#interactivity" contains the radio buttons, check-boxes, drop-down
menus etc. I chose to do it this way as it makes producing the desired page layout relatively
straightforward, though in some cases it was easier to separate the interactivity into smaller
divisions e.g. "#menus" & "#radios".

An example from weblink 1.1 is included below:

1 $(document).ready(function() {

2 Info = {

3 width: 400,

4 height: 400,

5 debug: false,

6 j2sPath: "../jsmol/j2s",

7 color: "white",

8 disableJ2SLoadMonitor: true, // makes loading look neater

9 disableInitialConsole: true, // makes loading look neater

10 use: "HTML5",

11 readyFunction: null,

12 script: "frank on; zap; load \"B2H6.ent\"; background white; color BONDS

grey; wireframe 15; select boron; color yellow; select atomno=2,atomno=6; color

pink;select all; spacefill 15%;connect (all) delete; moveto 0.5 -204 977 70 97.6

131"

↪→

↪→

↪→

13 }

14

15 var RadioGroup1 = [

16 ["select all; spacefill 15%","25%","checked"],

17 ["select all; spacefill 40%","50%"],

18 ["select all; spacefill 60%","100%"]

19];

20

21 $("#main").html(Jmol.getAppletHtml("JSmolApplet",Info))

22

23 $("#interactivity").html(Jmol.jmolBr()

24 +Jmol.jmolHtml("<p> Space filling ")

25 +Jmol.jmolRadioGroup(JSmolApplet, RadioGroup1)

26 +Jmol.jmolHtml("</p>
<p> Show B—H close

contacts ")↪→

27 +Jmol.jmolCheckbox(JSmolApplet, "connect (all) delete; connect 0.1 1.5

(boron) (hydrogen) modifyorcreate; color bonds grey; wireframe 15","connect (all)

delete","",false)

↪→

↪→

28 +Jmol.jmolHtml("</p>")

29)

30 });

The info object on line 2 sets up the main JSmol app. Note the attribute j2sPath: this links to the

11

j2s folder previously mentioned. The use: true attribute ensures that JavaScript is used to produce
the app, rather than Java.

Line 11 makes the JSmol app. The name allocated to it,
MUST be referred whenever a radiogroup menu or checkbox is made that will interact with

the JSmol app. The syntax for making these interactive elements can be seen in lines 13 onwards.

Note that the script attribute uses Jmol script: full details on this can be found in the Jmol
documentation. Using Jmol script in JSmol is basically the same as in Jmol, though there are some
small differences when making the isosurfaces.

3.3 Iso-surfaces

3.4 Online Resources

4 Atomic Orbitals as Cubes

4.1 Basics

I decided to create this app using jQuery and jQuery UI, as the UI allows you to create nice sliders,
buttons and dropdowns and jQuery lets you easily change a division on a webpage. This app is
basically just a slideshow of images - nothing is being calculated here. The slider changes the image
being displayed, and the dropdown menu changes the type of orbital being viewed by changing the
type of filename being loaded.

The images of the orbitals are saved as .jpgs. There are 32 images for each orbital, and the images
are stored in the form 1s(0).jpg, 1s(1).jpg, 1s(2).jpg, ...; 2s(0).jpg, 2s(1).jpg etc. The images are
displayed in a <div> with the selector theImage. The slider is produced by making a <div>, and
then using the jQuery syntax

$(’#slider’).slider({attributes})

These attributes include the maximum and minimum values of the slider, and also the slide attribute
that tells the webpage what to do when the slider is moved. In this case, the slide attribute is

1 slide: function(event, slider) {

2 index = 31 - slider.value;

3 $(’#theImage’).attr(’src’, imgstring + "(" + index + ’).jpg’);

4 }

where imgstring can take the strings ’1s’, ’2s’ etc., and is determined by the dropdown menu.
Note that I’ve taken the index not as the slider value but as its maximum value, 31, minus the slider
value: this is so that the first image is displayed when the slider is at the top (for some reason it
wont let you put the 0 at the top of the slider very easily).

12

4.2 Animation

To get this thing to animate, you just need to get it to change the image sequentially every few
milliseconds until all the images have been displayed. This is actually trickier than it sounds. In
JavaScript there is a function, setTimeout(function(), time) that will execute the function after
the predefined amount of time has passed. However, simply repeating a setTimeout function within
a for loop did not have the desired effect - I think because JavaScript is single threaded.

In the end, the animation was done using a recursive function- a function that calls itself. Specifically,
in this function animateCube there is a setTimeout function, within which animateCube is called
again while the counter i is less than 32. This all looks quite complicated, but what it does is
basically build up timeouts to execute the script at fixed intervals. This seems to be the simplest
way of achieving this effect from what I’ve read on Stack Overflow.

4.3 Online Resources

1. The Codecademy jQuery course. Whilst this course isn’t the best, I found it quite a useful
tool for picking up the basics of jQuery and jQuery UI so that I could produce this weblink. I
went into the course with a good background knowledge of JavaScript, HTML and some basic
knowledge of CSS.

2. The jQuery documentation, though I didn’t really use this

3. The jQuery UI documentation. This was very useful in learning how the UI elements
worked and, in particular, their attributes and how to return their own values. The examples
are particularly useful.

4. Stack overflow was also very helpful, particularly in getting to grips with the setTimeout()

function and producing the animateCube function.

13

https://www.codecademy.com/learn/jquery
https://api.jquery.com/
http://api.jqueryui.com/

	Introduction
	JSXgraph resources
	Background
	The fundamentals
	Basic set-up
	Producing lines, points, graphs etc

	Interactive elements
	Sliders
	Radio groups, check-boxes and menus

	Web-links 18.1-18.3: Quantum Mechanical Potentials
	for loops
	Classically allowed/forbidden regions
	Radio buttons

	Web-link 12.1: Reaction Profiles
	Steady state/pre-eqm solutions
	Axis scaling
	Energy level cartoon

	Web-links 4.2 & 4.3: 2D Density plots
	Improving performance by using 2 boards
	Changing the plot type

	Web-links 7.1 & 7.2: Boltzmann and Gibbs
	Web-link 2.3 Hydrogen-like wavefunctions
	Multiple boards
	Changing the scales
	Dropdown menus
	Toggling plots
	Radio Buttons

	Online Resources

	JSmol resources
	Background
	The fundamentals
	Iso-surfaces
	Online Resources

	Atomic Orbitals as Cubes
	Basics
	Animation
	Online Resources

