OTFTOTFM(1) OTFTOTFM(1)

NAME

otftotfm — create TeX font metrics from OpenType fonts

SYNOPSIS

otftotfm [—a] [options] fontfile [texname]

DESCRIPTION

Otftotfm creates the font metric and encoding files required to use an OpenType font with TeX. You sup-
ply an OpenType ".otf" or ".ttf" font file, a base ".enc" encoding, and a TeX name "fexname" for the result-
ing font, and say which OpenType features should be turned on. Then otftotfm generates and installs the
corresponding TeX-related metric files (".tfm" TeX font metrics, ".vf" virtual fonts, and ".enc" encoding
files). It works on both PostScript-flavored and TrueType-flavored OpenType fonts, although TrueType-fla-
vor support will only work easily with pdftex.

The easiest way to use otftotfm is with the —a option; see Automatic Mode below. Without —a, otftotfm
writes all its output files to the current directory.

After running "otftotfm fontfile texname" and installing the results (manually or with —a), you can use the
OpenType font in plain TeX with a command like this:

\font\myfont=texname at 10pt
{\myfont This text uses the OpenType font.}

LaTeX users will generally make a ".fd" input file so that commands like "\renewcommand{\rmde-
fault}{TeXName}" work correctly. See the EXAMPLE section for more; check the DIAGNOSTICS and
FREQUENTLY ASKED QUESTIONS sections if you have trouble.

OpenType Features

OpenType fonts support optional features that change their appearance. Use the —f option to turn on
selected features. For example, "—fsmcp" replaces lower-case letters with the corresponding small capitals,
in fonts that support this.

You’ll generally provide at least the "—fkern" and "—fliga" options, which activate pair kerns and f-ligatures.
Other interesting features include "—fcpsp", for capital spacing; "—fdlig", for optional ligatures; "—flnum",
"—fonum", "—fpnum", and "—ftnum", to control digit glyphs; "—fsmcp", for small capitals; "—fswsh", for
swash variants; and "—fcswh", for contextual swash. See the FEATURE DIRECTORY section below for
more. The otfinfo(1) program will report which features a font supports; run "otfinfo —f fontfile".

"

Feature options can also apply a feature to a subset of characters in the font. For example, "——If smcp"
only replaces letters with small capitals, whereas "—fsmcp" might additionally replace digits and punctua-
tion marks with small-capital versions.

Automatic Mode

Automatic mode, triggered by the —a/——automatic option, installs font metrics and encoding files where
TeX can find them, and additionally installs a Type 1 font and mapping for dvips(1). This requires a TeX
installation that follows the TeX Directory Structure standard (http://www.tug.org/tds/), such as most Unix
TeX installations.

Automatic mode should run seamlessly out of the box. Otftotfm will install metrics files, encodings, map
files, and Type 1 fonts into $HOME/.texmf-var or any other writable TEXMF directory, and run updmap(1)
to update the global lists of installed fonts. (On older teTeX installations, you may first need to copy the
system’s updmap.cfg file to SHOME/texmf/web2c¢ and run mktexlsr(1).) You can then run "otftotfm —a
fontfile texname" and immediately refer to the font in TeX using the texname you supplied. Again, you will
have to write ".fd" files and/or typescripts to make the font conveniently accessible from LaTeX or Con-
TeXt. See the DIAGNOSTICS section if you have problems with these instructions.

In automatic mode, otftotfm searches your STEXMFVAR or $TEXMF path for a writable directory, then

installs files under that directory tree as follows: 1 1 1 . File
type Directory Filename TFM TEXMF/fonts/ttm/vendor/typefacel tex-
name[——base].tfm VF TEXMF/fonts/vf/vendor/typefacel/ texname.vt

PL TEXMF/fonts/pl/vendor/typeface/ texname[——base].pl
VPL TEXMF/fonts/vpl/vendor/typefacel texname.vpl

Version 2.69 LCDF Typetools 1

OTFTOTFM(1) OTFTOTFM(1)

encoding TEXMF/fonts/enc/dvips/vendor/ a_signature.enc or TEXMF/dvips/vendor/
font map TEXMF/fonts/map/dvips/vendor/ vendor.map or TEXMF/dvips/vendor/

"TEXMF" stands for the writable TEXMF directory. Texname is the font name supplied as otftotfm’s sec-
ond argument. The vendor and typeface strings are required by TDS; they default to "lcdftools" and the
font’s family name, respectively, but see the ——vendor and ——typeface options. Signature is an opaque
6-character encoding signature.

Otftotfm also installs a font file suitable for printing. PostScript-flavored OpenType fonts are translated to
Type 1 format and installed as PFB fonts; TrueType-flavored fonts are installed as is (pdftex and pdflatex
can read TrueType directly). However, otftotfm will not install a font file if one already exists. The instal-

lation paths are as follows, where PSname is the font’s PostScript name. 1 1 1

PFB TEXMF/fonts/typel/vendor/typeface/ PSname.pfb

TrueType TEXMF/fonts/truetype/vendor/typeface/ fontfile

You can override these directories with environment variables and options as follows. Options take prece-
dence over environment variables. 1 1 1 . File type Environment
variable Option TFM TFMDESTDIR —-tfm—directory VF VFDESTDIR ——vf—directory
PL PLDESTDIR ——pl—directory VPL VPLDESTDIR ——vpl-directory
encoding ENCODINGDESTDIR ——encoding—directory

PFB T1DESTDIR ——typel—directory TrueType TRUETYPEDESTDIR —true-
type—directory font map— ——map-file

Otftotfm will update the TEXMF/Is-R file when installing files under TEXMF. It will also run the
updmap(1) program after changing a map file, unless the ——no—updmap option was supplied. However,
if an executable file called TEXMF/dvips/updmap exists, this file is executed (from the TEXMF/dvips direc-
tory) rather than the global updmap. This is so you can write a fast, customized version of updmap if

desired.

EXAMPLE
This section uses MinionPro to show one way to install OpenType fonts for LaTeX. We begin with six
fonts: "MinionPro-Regular.otf", "MinionPro-It.otf", "MinionPro-Semibold.otf", "MinionPro-Semi-

boldIt.otf", "MinionPro-Bold.otf", and "MinionPro-BoldIt.otf".

Our first task is to decide how to encode the fonts. The "encoding scheme" is used by TeX to decide how to
typeset accents and symbols like "$". The "LY1" encoding scheme has reasonable accent support and is a
good choice for many OpenType fonts. LY1 corresponds to the "texnansx.enc" encoding file, so we will
supply otftotfm with the "—e texnansx" option.

Expert note: Strictly speaking, LY1 corresponds to the "texnansi.enc" encoding file. Since the
"texnansx.enc" version omits duplicate characters, it has more room for font-specific glyphs and is
generally a better choice; but if you plan to type characters like "ae" directly into your editor,
rather than using TeX commands like \ae, you should use "texnansi.enc".

Next, we decide on a naming scheme for the font metric files. Let’s use the OpenType font names as a
base. (There’s generally no need to follow the six-character "Karl Berry" naming scheme.) Just in case we
come back later and add a different encoding scheme, we’ll prepend "LY 1--" to each name.

We’re now ready to run otftotfm for the first set of fonts. Note the "—fkern —fliga" options, which access
pair kerns and the default "f" ligatures.

otftotfm —a —e texnansx MinionPro—Regular.otf \
—fkern —fliga LY 1-——MinionPro—Regular
otftotfm —a —e texnansx MinionPro—It.otf \
—fkern —fliga LY 1-—MinionPro-It
otftotfm —a —e texnansx MinionPro—Semibold.otf \
—fkern —fliga LY 1-—MinionPro—Semibold
otftotfm —a —e texnansx MinionPro—SemiboldIt.otf \
—fkern —fliga LY 1-—MinionPro—SemiboldIt
otftotfm —a —e texnansx MinionPro—Bold.otf \

Version 2.69 LCDF Typetools 2

OTFTOTFM(1) OTFTOTFM(1)

—fkern —fliga LY 1-—MinionPro—Bold
otftotfm —a —e texnansx MinionPro—BoldIt.otf \
—fkern —fliga LY 1-——MinionPro—BoldIt

The small-caps fonts are generated with an additional "—fsmcp" option. We append "——fsmcp" to the font
metric names as well, differentiating them from the regular fonts. Although MinionPro’s italic fonts sup-
port small-caps, the LaTeX font selection scheme can’t access them easily, so we’ve left them off.

otftotfm —a —e texnansx MinionPro—Regular.otf \

—fkern —fliga —fsmcp LY 1-—MinionPro-Regular——fsmcp
otftotfm —a —e texnansx MinionPro—Semibold.otf \

—fkern —fliga —fsmcp LY 1-——MinionPro—Semibold——fsmcp
otftotfm —a —e texnansx MinionPro—Bold.otf \

—fkern —fliga —fsmcp LY 1-—MinionPro—Bold——fsmcp

To get old-style numerals, just add the "-fonum" option to each invocation -- and, to reduce confusion,
append "——fonum" to the font metric names.

At this point, all our font metric files are installed, and it’s finally time to create the ".fd" file. (The ".fd"
format is documented in The LaTeX Companion.) Let’s call the LaTeX font family "MinionPro". Then the
".fd" file is "LY 1MinionPro.fd", and it contains:

\DeclareFontFamily {LY 1} {MinionPro}{}
\DeclareFontShape{LY1}{MinionPro}{m}{n}%

{ <—> LY 1-—MinionPro—Regular }{}
\DeclareFontShape{LY1}{MinionPro}{m}{it}{ <—> LY 1—MinionPro-It }{}
\DeclareFontShape{LY1}{MinionPro}{m}{sc}%

{ <=> LY 1-—MinionPro—Regular——fsmcp }{}
\DeclareFontShape{LY1}{MinionPro}{sb}{n}%

{ <—> LY 1-—MinionPro—Semibold }{}
\DeclareFontShape{LY1}{MinionPro}{sb}{it}%

{ <—> LY 1-—MinionPro—Semiboldlt }{}
\DeclareFontShape{LY1}{MinionPro}{sb}{sc}%

{ <—> LY 1-—MinionPro—Semibold——fsmcp }{}
\DeclareFontShape{LY1}{MinionPro}{b}{n}{ <—> LY 1-——MinionPro-Bold }{}
\DeclareFontShape{LY1}{MinionPro}{b}{it}%

{ <=> LY 1-—MinionPro-BoldIt }{}
\DeclareFontShape{LY1}{MinionPro}{b}{sc}%

{ <—> LY 1-—MinionPro—Bold—fsmcp }{}
\DeclareFontShape{LY1}{MinionPro}{bx}{n}%

{ <—> ssub * MinionPro/b/n }{}
\DeclareFontShape{LY1}{MinionPro}{bx}{it}%

{ <—> ssub * MinionPro/b/it }{}
\DeclareFontShape{LY1}{MinionPro}{bx}{sc}%

{ <—> ssub * MinionPro/b/sc }{}

We’re now ready to use MinionPro in LaTeX, with lines like this in the document preamble:

\usepackage[LY 1]{fontenc}
\renewcommand {\rmdefault} { MinionPro }
\renewcommand {\bfdefault} {b}

Of course, we’re free at any time to add more MinionPro variants with otftotfm; they’ll become accessible
to LaTeX as soon as we edit the "MinionPro.fd" file.

OPTIONS
With long options, you need type only as many characters as will make the option unique.

Version 2.69 LCDF Typetools 3

OTFTOTFM(1) OTFTOTFM(1)

Font Feature and Transformation Options
—s script|.lang], ——script=script[.lang]
Apply features suitable to the script system script and language system lang. Scripts and language
systems are two-to-four-letter names assigned by Microsoft and Adobe. Examples include "latn"
(Latin script), "grek" (Greek script), and "yi.YIC" (Yi script with classic characters). If lang is not
specified, otftotfm will use the default language system for that script. You can give this option mul-
tiple times. Run "otfinfo —s font" to see the list of scripts and languages a font supports. Defaults to
"latn".

—f feature, ——feature= feature
Activate the feature named feature. Features are four-letter names assigned by Microsoft and Adobe;
they are meant to correspond to font behaviors, such as kerning or small-capitals. Examples include
"liga" (default ligatures), "dlig" (discretionary ligatures), "kern" (kerning), and "c2sc" (replacing cap-
itals with small capitals). Give this option multiple times to apply multiple features. Run "otfinfo —f
[——script option] font" to see the list of features a font supports for a specified script. Defaults to any
features required by the selected scripts.

—If feature, ——letter—feature= feature
Activate the feature named feature, but only for letters. For instance, the "—f smcp" option will apply
the small-caps feature to all characters in the encoding; this may result in changes to punctuation and
numbers as well as letters. The "——If smcp" option will apply the small-caps feature only to letters,
meaning characters with the "Letter" Unicode property.

——subs-filter pattern

——include-subs pattern

——exclude—subs pattern

——clear—subs
Limit the characters that otftotfm will substitute. Substitution is allowed on an input character if it
matches at least one of the ——include patterns, and none of the ——exclude patterns. Each pattern
applies to all following features, except that the ——clear option clears any accumulated patterns. The
——subs-filter pattern option acts like ——clear—subs followed by ——include—subs pattern. For pat-
tern syntax, see GLYPH PATTERNS, below.

In the command line below, the ’<Number>" pattern will force the "onum" feature to substitute only
numbers (and not, for example, punctuation). The "salt" feature can still substitute any character.
otftotfm —fsalt ——include—subs="<Number>" —fonum ...

-E fac, ——extend=fac
Widen, or extend, the font by a factor of fac. Like afm2tfm(1)’s —e option.

-S amt, —slant=amt
Oblique, or slant, the font by amt. Like afm2tfm(1)’s —s option.

—L amt, ——letterspacing=amt
Letterspace each character by amt units, where 1000 units equals one em. The width of each charac-
ter increases by amt, with half the space distributed to each sidebearing. Boundary-character kerns
are added to maintain alignment at the ends of lines.

——math—spacing[=skewchar]
Ignore the font’s claimed character widths, deriving horizontal metrics from bounding boxes instead.
This results in similar spacing as the Computer Modern Math Italic font, with increased sidebearings
for letters like f and j.

If you provide skewchar, a number between 0 and 255 or a single character, then otftotfm adds
heuristically-derived kerns to the font that may improve accent positions in math mode. To get the
benefits, you must tell TeX about the skewchar with a command like "\skewchar\font=skewchar".

-k N, ——min-kern=N
Only output kerning pairs whose absolute value is N or larger. Larger minimum kerns make kerning
less precise, but shrink the output TFM file. The default minimum kern is 2.0, or 0.002 em.

Version 2.69 LCDF Typetools 4

OTFTOTFM(1) OTFTOTFM(1)

——space—factor=fac

Scale the width of the inter-word space by a factor of fac.

——design—size=size

Set the output font’s design size to size, a value in TeX points. This value is mostly just documenta-
tion, since LaTeX essentially ignores fonts’ design sizes, but plain TeX may occasionally use the
design size to decide how large a font should be. (Loading a font in TeX "at" a particular size effec-
tively ignores the design size; loading a font plain or "scaled" by a given factor uses the design size.)
The default is taken from the input font’s optical size feature, or 10pt if it has no such feature.

Encoding Options
—e encoding, ——encoding=encoding

Select the output metrics’s base dvips(1) encoding. Otftotfm will search for encoding[.enc] the
same way that dvips would, so you may not need to give a full pathname. Say —e — to start with the
font’s default encoding. See ENCODINGS, below, for more information.

——boundary-char=char

Set the font’s boundary character to char, which should either be a single non-digit character, or a
number between —1 and 255. The default is taken from the encoding.

—-altselector—char=char

Set the font’s alternate-selector character to char, which should either be a single non-digit character,
or a number between —1 and 255. Use an alternate selector if you want to choose between different
versions of a character from within a TeX file. For instance, say that your font provides three ver-
sions of "A". If you want to access them all, pick a character to be your alternate selector -- say "*".
Then give otftotfm the *——altselector—char="*"" option. In TeX, "A" will produce the normal ver-
sion, "A*" will produce the first alternate, and "A**" will produce the second alternate. Furthermore,
"s*t" will activate any discretionary "s_t" ligature in the font.

The —-altselector—char mechanism uses the features specified by —-altselector—feature options.
You don’t need to turn on those features if you use ——altselector.

The alternate-selector character may also be specified in the encoding; see ENCODINGS, below.
See Sivan Toledo’s article cited in the SEE ALSO section for more information.

—-altselector—feature= feature

Activate the feature named feature for the ——altselector—char mechanism. Give this option multiple
times to activate multiple features. This option activates features only for use with ——altselec-
tor—char; use the ——feature option to activate features globally. Defaults to the salt and dlig fea-
tures.

——alternates—filter=pattern
——include-alternates=pattern
——exclude-alternates=pattern
——clear-alternates

Version 2.69

Limit the alternate characters that otftotfm will select. An alternate is used if it matches at least one
of the ——include patterns, and none of the ——exclude patterns. Each pattern applies to all following
features, except that the ——clear option clears any accumulated patterns. The ——alternates—filter
pattern option acts like ——clear—alternates followed by ——include-alternates pattern. For pattern
syntax, see GLYPH PATTERNS, below.

OpenType fonts can have many alternates per character, most of which aren’t interesting. For exam-
ple, the character "a" in WarnockPro-Regular has five alternates, "ordfeminine", "Asmall", "asupe-
rior", "a.end", and "orn.013". The —-altselector—char option lets you cycle through these alternates,
but it’s better to leave out the ones you don’t want, to avoid overfull encodings. Thus, if you were

only interested in ".end" variants, you might supply an ’——include—alternates="*.end"’ option.

In the command line below, the **.end’ pattern will apply to "aalt" alternates, but not to "salt" alter-
nates.
otftotfm —fsalt ——include-alternates="*.end" —faalt ...

LCDF Typetools 5

OTFTOTFM(1) OTFTOTFM(1)

—-ligkern=command
Add a LIGKERN command to the encoding. For example, *—-ligkern "T {L} h"’ suppresses any
T_h ligature in the font. You can supply multiple ——ligkern options. See ENCODINGS, below.

——position=command
Add a POSITION command to the encoding. For example, ’——position "T 10 0 20" adds ten units
of space to either side of the "T" character. You can supply multiple ——position options. See
ENCODINGS, below.

——unicoding=command
Add a UNICODING command to the encoding. For example, ’——unicoding "pil =: uni03D6"’ tells
otftotfm to encode "/pil" as U+03D6 GREEK PI SYMBOL. You can supply multiple ——unicoding
options. See ENCODINGS, below.

——no-encoding—commands
Ignore any LIGKERN and/or UNICODING commands in the encoding file.

——no—default-ligkern
Don’t include otftotfm’s default LIGKERN commands.

——coding-scheme=scheme
Add a CODINGSCHEME to the encoding. See ENCODINGS, below.

——warn—missing
Warn about encoded characters not supported by the font. See the WARNMISSING command in
ENCODINGS, below.

—-literal-encoding=encoding
Select the dvips(1) encoding used for the font. No glyph substitutions will be permitted, so the out-
put encoding will equal the input encoding (and otftotfm will not generate an output encoding).

——base—encodings= file
Experts only. Allow the output font to refer to existing "base" fonts. This can greatly reduce the
number of base fonts generated by otftotfm. Each line in the file argument contains a TeX font name
(as for ——name) and a corresponding literal encoding file (as for ——literal-encoding); for example:
WarnoProReg——eka eka
WarnoProReg——exp1 expl
The named fonts must have been created by prior runs of otftotfm on the same input OpenType font,
with the same ——extend and ——slant options as the current run. The current output font will refer to
glyphs from the named base fonts when possible. If the base fonts cover all glyphs required by the
output font, otftotfm won’t generate any new base fonts at all. The file can also refer to dotless-J
fonts using the following syntax:
WarnoProReg——Icdfj — dotless;j

Automatic Mode Options
—a, ——automatic
Select automatic mode.

—v vendor, ——vendor=vendor
Set the font vendor name, which is used to locate files within the TDS. Defaults to "lcdftools".

In automatic mode, TeX and friends will generally find required font files independently of the ven-
dor you select.

——typeface=typeface
Set the font typeface name, which is used to locate files within the TDS. Defaults to the current
font’s family name with unsuiable characters removed.

——no-typel
Do not use cfftot1(1) to create Type 1 fonts corresponding to the OpenType input fonts.

Version 2.69 LCDF Typetools 6

OTFTOTFM(1) OTFTOTFM(1)

——no—dotlessj
Do not use tldotlessj(1) to create a special dotless-j font when the input font doesn’t have dotless-j.

——no—updmap
Do not run an updmap(1) program. This can be useful if you’re installing a bunch of fonts; it is
much faster to run updmap once, at the end, than to run it once per font.

——no-truetype
Do not install TrueType-flavored OpenType fonts.

Output Options
—N texname, ——name=texname
Set the TeX name of the output font, which is used in font map files and, in automatic mode, to gen-
erate the output filename. The default is derived from the OpenType font’s name and the features you
selected.

-p, —pl
Output human-readable PL and VPL metrics, not binary TFM and VF metrics. Note: Otftotfm’s PL
and VPL output files are legal, but the fontinst program may not accept them (it has a picky parser).
Make sure to supply a ——coding—scheme; if that doesn’t help, run the TFM output through tftopl(1).

——no-virtual
Do not generate virtual fonts (VFs and VPLs). Otftotfm will warn if the selected font features can-
not be implemented without virtual fonts.

——no-encoding
Do not generate an encoding file.

——output—encoding[=file]
Only generate an encoding file; do not generate any other output. The encoding file is written to file,
or to standard output if no file argument is supplied.

——no-map
Do not generate a font map line for the font.

File Location Options
——tfm—directory=dir
——pl-directory=dir
——vf-directory=dir
——vpl-directory=dir
——encoding—directory=dir
——typel—directory=dir
Set the directory used for various output types. Each directory may be set by an environment vari-

able, and defaults to a TDS directory in automatic mode, or to "." otherwise. Environment variable
names and default TDS locations are described in the Automatic Mode section above.

——map-file=filename
Set file in which otftotfm will write a font map line for the font. The default is the standard output in
manual mode, and "TEXMF/fonts/map/dvips/vendor/vendor.map" (or "TEXMF/dvips/vendor/ven-
dor.map" on older installations) in automatic mode.

Miscellaneous Options
——glyphlist=file
Use file as the Adobe glyph list, which helps translate glyph names to Unicode code points. See
ENCODINGS, below, for more information.

-V, ——verbose
Write progress messages to standard error.

——no—create
Do not create or modify any files. Instead, write messages about the program’s hypothetical progress
to standard error.

Version 2.69 LCDF Typetools 7

OTFTOTFM(1) OTFTOTFM(1)

——force
Generate all files, even if it looks like versions are already installed.

—q, ——quiet
Do not generate any error messages.

——kpathsea—debug= flags
Set path searching debugging flags. See the Kpathsea manual for details.

—h, —help
Print usage information and exit.

——version
Print the version number and some short non-warranty information and exit.

ENCODINGS
Otftotfm interprets encoding files as Unicode. For example, say an input encoding has "/dotlessi" at posi-
tion 10. Otftotfm detects that position 10 should contain Unicode character U+0131 LATIN SMALL LET-
TER DOTLESS 1, and uses the font’s glyph for that character (possibly modified by any active features).
The selected glyph might not be named "dotlessi"; only the Unicode value matters.

Otftotfm assigns Unicode values to glyph names using a table published by Adobe (SEE ALSO has a ref-
erence), with extensions for TeX. For more fine-grained control, add UNICODING commands to the input
encoding file. These commands have the following format:

% UNICODING glyph =: choicel [choice2 ...] ;
This tells otftotfm that the glyph named glyph translates into the first Unicode value in the choice list that
has a character in the font. Glyph and the choices are PostScript glyph names; the initial "%" sign is
required; and each UNICODING line can contain multiple commands, separated by spaced semicolons.
For example,

9% UNICODING pil =: uni03D6 ;
tells otftotfm that the character "/pil" encodes as U+03D6 GREEK PI SYMBOL, and

9% UNICODING Delta =: uni0394 uni2206 ;
tells it that U+0394 GREEK CAPITAL LETTER DELTA should be preferred to U+2206 INCREMENT as
an encoding for "/Delta". You can also supply regular glyph names:

9% UNICODING Delta =: Deltagreek Delta ;
Supply zero choices to remove a glyph from the input encoding. For instance:

% UNICODING ff=:;fi=:;fl=;ffi=;ffl=;
The f-ligatures will be added back to the encoding, preferably at their original locations, if some font fea-
ture requires them. Finally, map a glyph to emptyslot’ if you don’t want otftotfm to use the slot for a liga-
ture character. For example, this will leave the *ff” slot unused if the font has no ’ff” glyph:

% UNICODING ff =: ff emptyslot ;
(Note that most OpenType fonts provide a visible representation for unused encoding slots, namely a box
with an X inside.)

LIGKERN comments in the encoding can add ligatures and inhibit kerns, as in afm2tfm(1). To add a liga-
ture, say:

% LIGKERN glyphl glyph2 =: result ;
The "=:" operator indicates a normal ligature, where both the input glyphs are removed and replaced by
result. To preserve the left-hand glyph, for an effect like "glyphl glyph2 =: glyphl result", use "|=:"
instead; to preserve the right-hand glyph, use "=:|". To remove all kerns between two characters, say:

% LIGKERN glyphl {} glyph2 ;
A "*" matches any character, so

% LIGKERN a {} *;
removes all kerns with "a" as the left-hand character, and

% LIGKERN * {} *;
removes all kerns.

Otftotfm also supports extended syntax for setting kern values and inhibiting ligatures. To add an n-unit
kern between two glyphs, say:

Version 2.69 LCDF Typetools 8

OTFTOTFM(1) OTFTOTFM(1)

% LIGKERNX glyphl {n} glyph2 ;
where 7 is an integer. This:
9% LIGKERNX glyphl {L} glyph2 ;
inhibits any ligature between glyphl and glyph2. "{LK}" and "{KL}" inhibit both ligatures and kerns.

You can set the ——boundary—char and —-altselector—char from an encoding file with commands like
this:

% LIGKERN || = boundarychar ;

% LIGKERNX ™" = altselectorchar ;
As with UNICODING, each LIGKERN or LIGKERNX line can contain multiple commands, separated by
spaced semicolons.

Otftotfm has a default set of eight ligatures, namely:

space 1 =: Islash ; space L =: Lslash ;

question quoteleft =: questiondown ; exclam quoteleft =: exclamdown ;

hyphen hyphen =: endash ; endash hyphen =: emdash ;

quoteleft quoteleft =: quotedblleft ;

quoteright quoteright =: quotedblright
LIGKERN commands in the encoding file and ——ligkern options can override these defaults, or supply the
——no—default-ligkern option to turn them off.

The POSITION command shifts a glyph within its bounding box. The syntax is
% POSITION glyph pdx pdy adx ;
This will add pdx units of space to glyph’s left edge; raise it up by pdy units; and add adx units to its width.
For example, to add 10 units of space to either side of the "T" glyph, supply
% POSITION T 10 0 20
To move the "degree" symbol up by 20 units, supply
% POSITION degree 020 0

The CODINGSCHEME command specifies the coding scheme for fonts using this encoding. This is a
string, less than 40 characters long and containing no parentheses, that classifies the encoding for TeX’s
purposes. Sample coding schemes include "TEX TEXT", "TEX MATH ITALIC", and "EXTENDED TEX
FONT ENCODING - LATIN". For example:

% CODINGSCHEME EXTENDED TEX FONT ENCODING - LATIN
Most tools ignore the coding scheme; fontinst is an exception. Otftotfm uses the encoding’s PostScript
name for the default coding scheme.

Finally, the WARNMISSING command makes any glyphs not supported by the input font appear as black
boxes. The dvips(1) processor will also print a warning when encountering these glyphs. For example:
% WARNMISSING yes

The ——unicoding, ——ligkern, ——position, ——coding—scheme, and ——warn—missing options add UNI-
CODING, LIGKERN/LIGKERNX, POSITION, CODINGSCHEME, and WARNMISSING commands to
an encoding, and can override commands in the encoding itself. Some common encoding files have com-
mands that are inappropriate for OpenType fonts; for example, "tl.enc" hard-codes f-ligatures, which can
cause problems with small-cap fonts. Supply the ——no—encoding—commands option to ignore all com-
mands from the encoding file. Commands from options like ——ligkern are processed in any case.

New Glyphs
New glyphs, such as ligatures and contextual substitutions, are added to the encoding in any empty spaces,
using their original locations when possible. If the encoding doesn’t have enough space for all new glyphs,
shorter ligatures composed of unaccented letters get precedence.

Synthetic Glyphs
Otftotfm can synthesize some glyphs using virtual font manipulations, if a required glyph is not available
in the input font. Specifically, it will synthesize:

cwm TeX’s compound word mark (a zero-width "strut" rule with height equal to the
font’s x-height)

Version 2.69 LCDF Typetools 9

OTFTOTFM(1)

ascendercompwordmark

OTFTOTEM(1)

"cwm" with height equal to the font’s ascenders

capitalcompwordmark "cwm" with height equal to the font’s capitals
visualspace A square cup used to represent spaces
dotless;j A dotless "j", synthesized with t1dotlessj(1)
dblbracketleft Kerned version of "[["

dblbracketright Kerned version of "]]"

bardbl The parallel symbol "||"

asteriskmath Vertically-centered "*"

ringfitted Ring accent centered on the width of "A"
twelveudash 2/3-em-wide dash

threequartersemdash 3/4-em-wide dash

centigrade "(degrees)C"

interrobang Combined "?!" symbol

interrobangdown Inverted interrobang

pertenthousand Per-ten-thousand sign (% with two extra 0s)
i) "IJ" ligature

ij "ij" ligature

Germandbls "SS" (a capital sharp-s)

SSsmall Small-capital version of "SS"

FFsmall Small-capital version of "FF"

Flsmall Small-capital version of "FI"

FLsmall Small-capital version of "FL"

FFIsmall Small-capital version of "FFI"

FFIsmall Small-capital version of "FFL"

GLYPH PATTERNS

The —-include—subs and ——include—alternates options, and their ——exclude and ——*-filter variants,
accept the following types of pattern.

Glyph names. Example: "Aacute”. For PostScript-flavored fonts, use otfinfo(1)’s —g option to see a
font’s glyph names, and "cfftot1 font.otf | tltestpage" to generate a PostScript file showing each glyph.

Glyph name patterns using the shell-style glob-matching rules: "*" matches any number of characters,
"?" matches any single character, and "[...]" matches any character in a set. Example: "*.end".

non non

Unicode category properties in angle brackets. Examples: "<Letter>", "<UppercaseLetter>", "<Lu>".
The complete list of both short and long names: Letter/L, UppercaseLetter/Lu, LowercaseLetter/Ll,
TitlecaseLetter/Lt, ModifierLetter/Lm, OtherLetter/Lo; Number/N, DecimalNumber/Nd, LetterNum-
ber/N1, OtherNumber/No; Punctuation/P, ConnectorPunctuation/Pc, DashPunctuation/Pd, OpenPunctu-
ation/Ps, ClosePunctuation/Pe, InitialPunctuation/Pi, FinalPunctuation/Pf, OtherPunctuation/Po; Sym-
bol/S, MathSymbol/Sm, CurrencySymbol/Sc, ModifierSymbol/Sk, OtherSymbol/So; Mark/M, Spacing-
Mark/Mc, EnclosingMark/Me, NonspacingMark/Mn; Separator/Z, SpaceSeparator/Zs, LineSepara-
tor/Z1, ParagraphSeparator/Zp; Other/C, Surrogate/Cs, Format/Cf, Control/Cc, PrivateUse/Co, Unas-
signed/Cn. Category values current as of Unicode 4.0.

Unicode ranges. Example: "U+007f-U+008C".

The "!" prefix negates a pattern, and you can separate multiple patterns by spaces.

FEATURE DIRECTORY
This section lists features common to Western OpenType fonts and describes how otftotfm handles them

for

common fonts. Please send the author mail if otftotfm does not handle a feature you need, or you

believe it handles some feature incorrectly.

aalt, Access All Alternates

Version 2.69

Lets the user choose between all available alternate forms for a character. This includes things like
superscript and subscript variants, different styles (swash, for example), and even ornaments. The
—-—altselector—feature=aalt option can help an ——altselector—char provide useful access to alter-
nates, but the aalt feature isn’t usually useful on its own. Try the salt and calt features instead.

LCDF Typetools 10

OTFTOTFM(1) OTFTOTFM(1)

c2sc, Small Capitals From Capitals
Replaces capital letters with small capitals: a sort of converse of the more conventional smcp feature,
which replaces lower-case letters with small capitals. Supported.

calt, Contextual Alternates
Lets the user choose between context-appropriate swash forms for each character. For example,
given the word "DREW" in a cursive typeface, the "R E W" might be translated to calmer forms than
the initial "D". There may be more than one choice for a given letter, in which case the user should
be able to select among them. TeX can’t support complex contextual alternates, or alternate selec-
tion, but otftotfm supports some fonts quite well. The input encoding should have lots of empty
space for variants, and it should specify a boundary character. See also cswh.

case, Case-Sensitive Forms
Shifts punctuation marks up to a position that works well with all-capital-letter sequences. For exam-
ple, the hyphen character, which generally centers vertically on the x-height, is raised up to center
vertically on a capital letter. Also replaces text figures with lining figures, and accent marks with
forms more appropriate for capitals. Supported.

cpsp, Capital Spacing
Adds a bit of space on either side of each capital letter. Supported. (However, the OpenType tag reg-
istry suggests that cpsp be on by default, but applying to all-caps text only; TeX cannot easily imple-
ment that contextual intelligence.)

cswh, Contextual Swash
Lets the user choose between context-appropriate swash forms for each character. For example, in
the words "Ab AC", the first "A" might be translated to a swash form, while the second might not.
There may be more than one choice for a given letter, in which case the user should be able to select
among them. Otftotfm supports some fonts quite well. The input encoding should have lots of
empty space for swash variants, and it should specify a boundary character. See also calt and swsh.

dlig, Discretionary Ligatures
Activates uncommon ligatures, such as "c_t", "s_p", and "s_t". Supported.

dnom, Denominators
Replaces digits and some punctuation marks with smaller forms sitting on the baseline, intended for
fraction denominators. Supported.

fina, Terminal Forms
Substitutes appropriate forms for letters occurring at the ends of words. This feature doesn’t select
swash variants; it’s intended for normal use, and the specification recommends that it be on by
default. Partially supported: TeX will only treat spaces as the ends of words, where a correct imple-
mentation would probably include punctuation too. See cswh for selecting swash variants active at
the ends of words.

frac, Fractions
Replaces simple sequences like "1/2" with nice-looking fractions. Supported, but beware: many
fonts will translate "11/32" into "1" + "1/3" + "2".

hist, Historical Forms
Replaces characters with historical variants. Usually, this means at least translating regular "s" to
long "s". Supported.

kern, Kerning
Adjusts the space between characters (pair kerning). Generally supported, and you should probably
turn it on.

liga, Standard Ligatures
Activates common ligatures, such as "f_f", "f i", "f f j", and (in some Adobe fonts) "T_h". Gener-
ally supported, and you should probably turn it on.

Inum, Lining Figures
Uses lining figures, the set of digits that are all about as high as capital letters. Supported. Compare
onum; see also pnum and tnum.

numr, Numerators
Replaces digits and some punctuation marks with smaller, raised forms intended for fraction numera-
tors. Supported, but not usually useful.

Version 2.69 LCDF Typetools 11

OTFTOTFM(1) OTFTOTFM(1)

onum, Oldstyle Figures
Uses old-style figures, also known as text figures. This is the set of digits that have ascenders and
descenders like lower-case letters. Supported. Compare lnum; see also pnum and tnum.

ordn, Ordinals
Designed for Spanish and French. Replaces ordinal numbers, such as "2.0", with forms where the
"0" is raised, and replaces the sequence "No" with an integrated glyph. Supported.

ornm, Ornaments
Replaces some alphabetic characters in the font with ornaments, and links the bullet character to a set
of all bullet-like ornaments, from which the user can choose. Partially supported: TeX can handle
alphabetic substitutions, but not bullet choice.

pnum, Proportional Figures
Digits will have different widths. Supported. Compare tnum; see also lnum and onum.

salt, Stylistic Alternates
Lets the user choose between stylistic alternate forms for a character. The ——altselector—char mech-
anism provides useful access to this feature. If you turn on salt globally, otftotfm takes the first alter-
nate form whenever there’s more than one choice. See also aalt and ss01; salt is generally more use-
ful than aalt for TeX, since it refers exclusively to stylistic alternates.

sinf, Scientific Inferiors
Replaces digits and some punctuation marks with smaller, lowered forms intended for subscripts.
Supported. Compare subs.

size, Optical Size
This feature stores information about the range of optical sizes for which the font was intended.
There is no point in selecting it with otftotfm, since it should not change the font’s appearance in any
way.

smcp, Small Capitals
Replaces lower-case letters with small capitals. Supported. Compare c2sc.

ss01-ss20, Stylistic Sets 1-20
Replaces characters with a uniform set of stylistic alternates. Differs from features like salt in that a
Stylistic Set is uniform: an ssXX feature should never involve selection from a set of possible alter-
nate characters. Supported.

subs, Subscript
Replaces characters with smaller, lowered forms intended for subscripts. Supported. Compare sinf;
some fonts support sinf but not subs.

sups, Superscript
Replaces digits, some punctuation marks, and some lower-case letters with smaller, raised forms
intended for superscripts. Supported.

swsh, Swash
Activates all swash forms for each character. There may be more than one swash form, in which case
otftotfm will pick the first one listed. Supported, except that swash variants other than the first are
inaccessible. Note that some fonts with swash variants support the cswh feature exclusively.

tnum, Tabular Figures
All digits will have the same width, so that tables and the like will align visually. Supported. Com-
pare pnum; see also Inum and onum.

zero, Slashed Zero
Replaces the zero character with a slashed zero. Supported.

DIAGNOSTICS AND TROUBLESHOOTING
no writable directory found in STEXMF
Otftotfm could not find a writable directory in your $TEXMFVAR or $TEXMF path. Did you cre-
ate a SHOME/.texmf-var or $HOME/texmf directory? If so, run the command "kpsewhich
——expand—path="$TEXMF’" to verify that directory is not being found. You may need to set your
TEXMF environment variable, to *{!!""$SHOME" /texmf,!\STEXMFMAIN}’, for instance (note the
different kinds of quotes; on my machine, this expands to ’{!!/home/kohler/texmf,!!$TEXMF-
MAINY).

Version 2.69 LCDF Typetools 12

OTFTOTFM(1) OTFTOTFM(1)

’char’ has no encoding, ignoring kern removal

(or ligature removal, lig/kern removal, or ligature)
These messages indicate a slight problem with your encoding file: one of the LIGKERN commands
referred to a character not present in the encoding. This might be due to a misspelling in the LIGK-
ERN command or the encoding file, or it might be an oversight. Either fix the encoding file or ignore
the warning.

can’t map ’char’ to Unicode
Another encoding file problem: One of the glyph names in an UNICODING block could not be con-
verted to Unicode. This is problematic since UNICODING exists wholly to translate glyph names
into Unicode. Fix the encoding file or ignore the warning.

not enough room in encoding, ignoring N glyph(s) ...
There wasn’t space in the encoding for all the glyphs referred to by the features you selected. For
example, maybe the font had more ligatures than there were empty slots in the encoding. Fix this
warning by selecting fewer features, or by using an encoding with more empty slots, such as the
7t.enc encoding distributed with otftotfm.

FREQUENTLY ASKED QUESTIONS

BUGS

How can I get a small-caps "SS" in place of the German sharp-S?
Supply the option ’——unicoding "germandbls =: SSsmall"’.

How can I prevent f-ligatures from forming in a small-caps font?
This should happen automatically, but some overzealous encoding files add f-ligatures even when the
font doesn’t request them. Try the "——no—encoding—commands" option if this is a problem for you.

Otftotfm seems to take a long time.
Use the —V option to see what it’s doing. Often the culprit is the updmap(1l) program; if you’re
planning to run otftotfm multiple times, give it the ——no—updmap option and run updmap manu-
ally when you’re done.

How can I refer to the different forms of phi?
Otftotfm follows TeX practice and widely-distributed TeX encoding vectors, so "/phi" in an input
encoding vector should map to a "straight" phi and "/phil" should map to a "loopy" phi. Note that
TeX practice differs from the PostScript standard naming conventions, in which "/phi" is "loopy" and
"/phil" is "straight"; this means that otftotfm may map "/phi" in an input encoding vector to a font’s
"/phil" glyph, and vice versa. Perhaps most unambiguously, you can use "/uni03D5" for the
"straight" form and "/uni03C6" for the "loopy" form.

How can I get lining figures (that is, normal line-height digits) with small caps ("—fsmcp’)?
Many fonts use old-style figures by default with small caps. Since the default is not specified, it’s
wise to explicitly supply *—flnum’ or ’-fonum’.

See the documentation for ——pl above if you have problems running otftotfm’s output through fontinst.

SEE ALSO

pltotf(1), tftopl(1), vptovf(1l), afm2tfm(1), dvips(1), cfftotl(1), otfinfo(1), tldotlessj(1), tltestpage(1),
kpsewhich(1), updmap(1)

Adobe Type 1 Font Format

Adobe Technical Notes #5176, The Compact Font Format Specification, and #5177, The Type 2 Charstring
Format

OpenType Specification, Version 1.4

A Directory Structure for TeX Files, http://www.tug.org/tds/

Kpathsea: A library for path searching, http://www.tug.org/kpathsea/

Sivan Toledo, Exploiting Rich Fonts, TUGboat 21(2), 2000,

Version 2.69 LCDF Typetools 13

OTFTOTFM(1) OTFTOTFM(1)

http://www.tug.org/TUGboat/Articles/tb21-2/tb67tole.pdf

Michel Goossens, Frank Mittelbach, and Alexander Samarin, The LaTeX Companion (for information on
the .fd file format)

Adobe Systems, "Unicode and Glyph Names". Refers to the glyphlist.txt file used to translate glyph names
to Unicode code points. http://partners.adobe.com/public/developer/opentype/index_glyph.html

AUTHOR
Eddie Kohler (kohler @cs.ucla.edu)

Thanks to Karl Berry, Marco Kuhlmann, Adam Lindsay, Bruce D’ Arcus, Thomas Esser, Claire Connelly,
Nelson H.F. Beebe, and Ryuji Suzuki for suggestions, bug reports, and help. Particular thanks to Achim
Blumensath and Michael Zedler for suggestions and patches, some of them extensive.

Version 2.69 LCDF Typetools 14

