2 Product Operators

The product operator formalism is a complete and rigorous guantum
mechanical description of NMR experiments; the formalism is a version of
density matrix theory and is well suited to calculating the outcome of
modern multiple-pul se experiments.

One particularly appealing feature is the fact that the operators have a
clear physical meaning and that the effects of pulses and delays can be
thought of as geometrical rotations. To emphasise this connection the
discussion will start with abrief summary of the vector model.

2.1 Vector model of NMR

The vector model is a complete description of the behaviour of an ensemble
(a macroscopic sample) of non-interacting spin-half nuclei. Each spin has
two energy levels and at equilibrium the lower of these is more populated.
The result is a net magnetization of the sample along the direction of the
applied magnetic field (taken to be the z-direction). The vector model
focuses entirely on the behaviour of this magnetization, which can be
represented as a vector.

Radiofrequency pulses are represented as rotations about the x- or y-axes;
if the radiofrequency field strength is i (rad s™) then a pulse applied for a
time t causes a rotation through an angle a, where a = wt. For example a

90° pulse about the-axis haswt = 772 and rotates magnetization from the l

z-axis onto the y-axis.

Free precession is represented as a rotation abomathie at frequency
Q (rad s%), where Qs the offset (that is the difference between the Larmor
frequency and the transmitter frequency). Free precession for atimet causes
arotation through an angle a, where a = Q.

Only x- and y-magnetization are directly observable in an NMR
experiment; it is the precession of the magnetization in the xy-plane which
givesrise to the free induction signal.

2.1.1 Example — the conventional pulse-acquire experiment

Assume that the system starts at equilibrium; a pulse of flip angle a is
applied and then the free induction signal is recorded. Let the equilibrium
magnetization (aligned along the z-axis) have size My. After the pulse the z-
and y-magnetization (M, and My, respectively) are

M; = cos a Mg My =-sin aMg

Free precession, which is a rotation about the z-axis, has no effect on the z-
component. The y-component rotates in the xy-plane giving the following
transverse components after timet
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My(t) =-sinacos@Qt My  My(t) =sinasin2t Mg

It is these transverse (that is, x and y) components of the magnetization that
are detected in NMR experiments. It is seen that these are oscillating at
frequency Q, and that their overall size depends on the sine of the flip angle
i.e. they are a maximum for a 90° pulse.

2.1.2 Example — the spin echo

a b e f _
90° (x) ——delay r——180°(x) ——delay r—— acquire

a b c d e f

y-component

P
PP BB B

L x-component — _|

After the delay, point b, the vector can be resolved into y- and x-components
as shown in c. The 180° pulse about theaxis has no effect on the
component of the magnetization; in contrast yfeomponent is rotated by
180° in theyz-plane, ending up along the opposite axis. The individual
components after the 180° pulse are showash Bind corresponding vector is
shown ine. The effect of the 180° pulse about thaxis is to reflect the
vector in thexz-plane. During the second tintethe vector precesses in the
same direction as it did during the first timand through the same angle,
ending up along thg-axis.

At the end of the sequence the vector always ends up alongattis,
regardless of the time and the offset; the sequence is said to "refocus the
offset (or shift)".

2.2 Operators for one spin

2.2.1 Operators

Operators are mathematical functions which arise in quantum mechanics
(see lecture 1); as their name suggest, they operate on functions. In quantum
mechanics operators represent observable quantities, such as energy, angular
momentum and magnetization.

For a single spin-half, the- y- andz-components of the magnetization
are represented by the spin angular momentum operktotg and I,
respectively. Thus at any time the state of the spin system, in quantum
mechanics the density operator,can be represented as a sum of different
amounts of these three operators
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oft) =a(t)1, +b(t)1, +ct)1,

The amounts of the three operators will vary with time during pulses and
delays. Thisexpression of the density operator as a combination of the spin
angular momentum operators is exactly analogous to specifying the three
components of a magnetization vector.

At equilibrium the density operator is proportional to I, (there is only z-
magnetization present). The constant of proportionality is usually
unimportant, so it is usual to write ge = |.

2.2.2 Hamiltoniansfor pulsesand delays
In order to work out how the density operator varies with time we need to

know the Hamiltonian (which is also an operator) which is acting during
that time.

The free precession Hamiltonian (i.e. that for adelay), Hree, iS

Hfree = O,

In the vector model free precession involves arotation at frequency (2 about
the z-axis; in the quantum mechanical picture the Hamiltonian involves the
z-angular momentum operator, |, — there is a direct correspondence.

The Hamiltonian for a pulse about thexis, Hpuse, iS

Hpulse,x =l

and for a pulse about tlyeaxis it is

Hpusey = awily

Again there is a clear connection to the vector model where pulses result in
rotations about the- or y-axes.

2.2.3 Equation of motion

The density operator at tinieo(t), is computed from that at time 6(0) ,
using the following relationship

o(t) = exp(—iHt) o(0) exp(iHt)

whereH is the relevant hamiltonian. H and o are expressed in terms of
the angular momentum operators if turns out that this equation can be solved
easily with the aid of a few rules.

Suppose that arx-pulse, of durationt,, is applied to equilibrium
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magnetization. In this situation H = wlx and o(0) = I, the equation to be
solved is

a(tp) = exp(—ia)ltpl X) [, expﬁa)ltp IX)

Such equations involving angular momentum operators are common in
guantum mechanics and the solution to them are aready all know. The
identity required here to solve this equation is

exp(—iax) Izexp(iélx)zcoseIz—sin6’|y [2.1]

This is interpreted as a rotation of 1, by an angle 8 about the x-axis. By
putting 8= at, thisidentity can be used to solve Eqgn. [2.1]

a(tp) =coxwt, |, —sinwt,

The result is exactly as expected from the vector model: a pulse about the x-
axis rotates z-magnetization towards they-axis, with a sinusoidal
dependence on the flip angi,

2.2.4 Standard rotations

Given that there are only three operators, there are a limited number of
identities of the type of Egn. [2.1]. They all have the same form

exp(— 4 a) {old operator} exp(i a a)
= cos@ {old operator} +sin@ { new operator}

where {old operator}, {new operator} arid are determined from the three
possible angular momentum operators according to the following diagrams;
the label in the centre indicates which axis the rotation is about

/\/\yx/\
NN AN

Angle of rotation = Qt for offsets and axt, for pulses

First example: find the result of rotating the operajdoy 8 about thex-
axis, that is

exp(—iax) Iyexp(iax)
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For rotations about x the middle diagram |1 is required. The diagram shows
that 1y (the "old operator") is rotated to I, (the "new operator"). The required
identity istherefore

exp(- 16x) lyexp(i8y) = cosbly + sinbl,
Second example: find the result of

exp(-i8y) {- 1} exp(id)

This is a rotation about y, so diagram 11l is required. The diagram shows
that 4, (the "old operator") is rotated tdy—(the "new operator"). The
required identity is therefore

exp(—iay){— Iz}exp(iay)zcosﬁ{— IZ} +sin0{—lx}

=-cosf |, - sing I,

Finally, note that a rotation of an operator about its own axis has no effect
e.g. arotation of 1, about x leaves I unaltered.

2.2.5 Shorthand notation

To save writing, the arrow notation is often used. In this, the term Ht is
written over an arrow which connects the old and new density operators.
So, for example, the following

oft,) = ewl-iat, 1, ) o0 epfat,! )
iswritten
o(0) 0t - oft,
For the case where {0) = I,

I, 0 i coswit, |, —sinat, |,
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2.2.6 Example calculation: spin echo

a b e f
90°(x) —— delay r——180°(x) —— delay r—— acquire

At a the density operator idy—~ The transformation froma to b is free
precession, for which the Hamiltonian €l the delay r therefore
corresponds to a rotation about thaxis at frequency2. In the short-hand
notation this is

-1, 0t - o(b)

To solve this diagramt above is needed with the angle2s, the "new
operator" idy

-1, 0t - —cosQrl, +sinQrl,

In words this says that the magnetization precesses froowards .

The pulse aboutx has the Hamiltonianwly; the pulse therefore
corresponds to a rotation aboutor a timet, such that the anglenty, is 77
radians. In the shorthand notation

—cosQr 1, +snQrl, 08 - o(e) [2.2]

Each term on the left is dealt with separately. The first term is a rotation of
y aboutx; the relevant diagram is thus

—-cosQrl, U Py —cosQrcoswt, |, —cosQrsinat 1,

However, the flip angle of the pulseit,, is 77so the second term on the

right is zero and the first term just changes sign (@es—1); overall the
result is

-cosQrl, Dﬁchosery

The second term on the left of Eqn. [2.2] is easy to handle as it is unaffected
by a rotation about. Overall, the effect of the 180° pulse is then

—cosQrl, +sinQrl, O - cosQrl, +sinQrl, [2.3]
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As was shown using the vector model, the y-component just changes sign.
The next stage is the evolution of the offset for time 7. Again, each term on
the right of Egn. [2.3] is considered separately

cosQr 1, O~ cosQreosQrl, —sinQrcosQrl,

snQrl, O - cosQrsnQrl, +sinQrsinQrl,

Collecting together the termsin I and |, the final result is

(cosQrcosQHs’nQrsinQr) |, +(cosQrsinQr - sinQ7cosQT) I,

The bracket multiplying Iy is zero and the bracket multiplying Iy is =1
because of the identity cos’@+ sin“@= 1. Thus the overall result of the spin
echo sequence can be summarised

|, OYergeaT L,

In words, the outcome is independent of the offset, ©, and the delay 7, even
though there is evolution during the delays. The offset is said to be
refocused by the spin echo.

In genera the sequence
—-7-180°%) — 17— [2.4]

refocuses any evolution due to offsets; this is a very useful feature which is
much used in multiple-pulse NMR experiments.

One further point is that as far as the offset is concerned the spin echo
sequence of Egn. [2.4] is just equivalent to 180°(

2.3 Operators for two spins

2.3.1 Product operatorsfor two spins

The product operator approach comes into its own when coupled spin Jr2 J12

systems are considered; such systems cannot be treated by the vector model| | | '
However, product operators provide a clean and simple description of t
important phenomena of coherence transfer and multiple quantum €2 2

coherence. The spectrum from two coupled
spins, with offsets &, and 2
(rad s™) and mutual coupling
. Ji2 (Hz).
2.3.2 Product operatorsfor two spins

For a single spin the three operators needed for a complete descriptign are
ly andl,. For two spins, three such operators are needed for each spin; an

2-7



additional subscript, 1 or 2, indicates which spin they refer to.

l1, represents z-magnetization of spin 1, and Iy, likewise for spin 2. 11
represents x-magnetization on spin 1. As spin 1 and 2 are coupled, the
spectrum consists of two doublets and the operator 11, can be further
identified with the two lines of the spin-1 doublet. In the language of
product operators |1« is said to represent in-phase magnetization of spin 1;
the description in-phase means that the two lines of the spin 1 doublet have
the same sign and lineshape.

Following on in the same way |4 represents in-phase magnetization on
spin 2. 11y and |,y also represent in-phase magnetization on spins 1 and 2,
respectively, but this magnetization is aligned along y and so will give rise
to a different lineshape. Arbitrarily, an absorption mode lineshape will be
assigned to magnetization aligned along x and a dispersion mode lineshape
to magnetization along y.

Lo A

\K IZX 1 1 l2y
L R

_ o There are four additional operators which represent anti-phase
1he absorption and dispersion - magnetization: 211z, 2l1yl2z 2l1dax 21172y (the factors of 2 are needed for

lineshapes.  The absorption

lineshape is a maximum on  normalization purposes). The operator 2141, is described as magnetization
resonance, whereas the

dispersion goes through zero at 0N SPIN 1 which is anti-phase with respect to the coupling to spin 2.

this point. The "cartoon" forms
of the lineshapes are shown in
1 2 IlXIZZ

the lower part of the diagram. 2 hyh,
er A

2,

2 IlzIZX 1 2 IlzIZy ‘ I
) QIZI )

0,

Note that the two lines of the spin-1 multiplet are associated with different
Spin states of spin-2, and that in an anti-phase multiplet these two lines have
EX different signs. Anti-phase terms are thus sensitive to the spin states of the
B orepn2 coupled spins.
The two lines of the spin-d There are four remaining product operators which contain two transverse

doublet can be associated with  (i.e. X- Or y-operators) terms and correspond to multiple-quantum
different spin states of spin 2. coherences; they are not observable

Finally there is the term 21,15, which is also not observable and corresponds
to aparticular kind of non-equilibrium population distribution.

2-8



2.3.3 Evolution under offsets and pulses

The operators for two spins evolve under offsets and pulses in the same way
as do those for asingle spin. The rotations have to be applied separately to
each spin and it must be remembered that rotations of spin 1 do not affect
spin 2, and vice versa.

For example, consider |1, evolving under the offset of spin 1 and spin 2.
The relevant Hamiltonian is

Hiree = il 1, + 0l 2,

where Q; and Q, are the offsets of spin 1 and spin 2 respectively. Evolution
under this Hamiltonian can be considered by applying the two terms
sequentialy (the order isimmaterial)

I, O -
P N
|, otfr . ol

Thefirst "arrow" is arotation about z
I, OB - cosQit 1, +sinQ,tl,, OB -

The second arrow leaves the intermediate state unaltered as spin-2 operators
have not effect on spin-1 operators. Overall, therefore

I, OBEFE S cosQutl, +snQitl,,

A second example is the term 21415, evolving under a 90° pulse about the
y-axis applied to both spins. The relevant Hamiltonian is

H = a)ll ly + a)ll 2y
The evolution can be separated into two successive rotations

21 1, 0ty oty -

The first arrow affects only the spin-1 operators; a 90° rotatidy abouty
gives -1, (remembering thadxt = 772 for a 90° pulse)
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21, 1,, 0P - cosayt 21,1, —sinwltZIlz ,, 0t -

oL 211, ot -

1x 2z lz 2z

The second arrow only affects the spin 2 operators; a 90° rotatioaboiut
y takes it tax

21,1, Oty 211, 0B L 21,1,

The overall result is that anti-phase magnetization of spin 1 has been
transferred into anti-phase magnetization of spin 2. Such a process is called
coherence transfer and is exceptionally important in multiple-pulse NMR.

2.3.4 Evolution under coupling

The new feature which arises when considering two spins is the effect of
coupling between them. The Hamiltonian representing this coupling is itself
a product of two operators:

HJ = 27ﬂ12 llz|22

wherelJ;, is the coupling in Hz.

Evolution under coupling causes the interconversion of in-phase and anti-
phase magnetization according to the following diagrams

/\/\
NN

angle = Tt

For example, in-phase magnetization alongecomes anti-phase alogg
according to the diagrath

|, O EP 4 & cosmptly, +sinmd,t 20,1,

note that the angle 18);,t i.e. half the angle for the other rotatiohd| 1.

Anti-phase magnetization alorxgpbecomes in-phase magnetization along
y; using diagranV:

21,1, OFPHMF - cosm,t 21,1, +sinmy,tl,
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The diagrams apply equally well to spin-2; for example
= 21,1, OB - —cosd,t21,1,, + sivd,tl,,

Complete interconversion of in-phase and anti-phase magnetization
requires a delay such that Tyt = T2 i.e. adelay of 1/(2J12). A delay of 1/J;,
causes in-phase magnetization to change its sign:

I, OFPEltr ey 21,1, 1, OEPEItR 008 - -1,

2.4 Spin echoes

It was shown in section 2.2.6 that the offset is refocused in a spin echo. In
this section it will be shown that the evolution of the scalar coupling is not
necessarily refocused.

2.4.1 Spin echoesin homonuclear spin system

In this kind of spin echo the 180° pulse affects both sp@st is a non-
selective pulse:

— 17— 180°k, to spin 1 and spin 2) —

At the start of the sequence it will be assumed that only in-pkase
magnetization on spin 1 is preseht. In fact the starting state is not
important to the overall effect of the spin echo, so this choice is arbitrary.

It was shown in section 2.2.6 that the spin echo applied to one spin
refocuses the offset; this conclusion is not altered by the presence of a
coupling so the offset will be ignored in the present calculation. This greatly
simplifies things.

For the first delayr only the effect of evolution under coupling need be
considered therefore:

,, O s - cosm,r 1, +sin/d,T 21,1,

The 180° pulse affects both spins, and this can be calculated by applying the
180° rotation to each in succession

cosrd,,T |, +sinm,r 21,1, Ot Ofr -

where it has already been written in tlaat, = 1 for a 180° pulse. The
180° rotation about for spin 1 has no effect on the operdtgrandl,,, and
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it Ssmply reverses the sign of the operator |y

cosrd,, i, +sinmd, 21,1, O - cosm,d, —snm,r2l 1, 0

The 180° rotation aboutfor spin 2 has no effect on the operalggand
l1y, but simply reverses the sign of the operbtorThe final result is thus

cosrdy, 1, +sinm, 1211, O - cosm, o, —sinmd, 1211,

01 - cosmd, o, +sinmd,r21,1,,

Nothing has happened; the 180° pulse has left the operators unaffected! So,
for the purposes of the calculation it is permissible to ignore the 180° pulse
and simply allow the coupling to evolve forz.2 The final result can
therefore just be written down:

|, O O cos27,, 7 1y, +sin27,7 21,1,

From this it is easy to see that complete conversion to anti-phase
magnetization requires@;,7= 772 i.e. 7= 1/(4J12).

The calculation is not quite as simple if the initial state is choseég as
(see exercises), but the final result is just the same — the coupling evolves for
2r.

|, OO - —cos2m,, 71y, +sin27,7 21,1,
In fact, the general result is that the sequence
— 7—180°k, to spin 1 and spin 2) —
IS equivalent to the sequence
— 21— 180°k, to spin 1 and spin 2)

in which the offset is ignored and coupling is allowed to act for time 2
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2.4.2 Interconvertingin-phase and anti-phase states

So far, spin echoes have been demonstrated as being useful for generating
anti-phase terms, independent of offsets. For example, the sequence

90°(X) — 1/(4J1,) — 180°K) — 1/(4Jy) —

generates pure anti-phase magnetization.
Equally useful is the sequence

— 1/(4)y) — 180°K) — 1/(4)rp) —

which will convert pure anti-phase magnetization, such las;2into in-
phase magnetizatioh,.

2.4.3 Spin echoesin heteronuclear spin systems

If spin 1 and spin 2 are different nuclear species, sucfiCaandH, it is a
possible to choose to apply the 180° pulse to either or both spins; the™"*
outcome of the sequence depends on the pattern of 180° pulses. spin 2 _I]_
Sequencea has already been analysed: the result is that the offset is b
refocused but that the coupling evolves for time 2Sequenceb still spin1—— 1 T

refocuses the offset of spin 1, but it turns out that the coupling is also
refocused. Sequenceefocuses the coupling but leaves the evolution of the spin2

offset unaffected. c
spin 1 ¢

T
2.4.3.1 Sequenceb spin 2 —l]—

It will be assumed that the offset is refocused, and attention will therefor§ g, st et can be appioq

nces that can be applied

restricted to the effect of the coupling o heteronuclear slpin systems.
The open rectangles represent
180° pulses.

l,, O P & cosy,r 1, +sinmd,T 21,1,
The 180°K) pulse is only applied to spin 1
cos7d,, T |y, +sinmdy,7 21,1, 01 - cosm,r 1, —sin/,7 21,,1,,[2.5]

The two terms on the right each evolve under the coupling during the second
delay:
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|
cosrd,,r |, Oty -
CoS7d,,TCoSTD,, T |, +sin7d,Tcosra,,T 21, 1,

—sin/y,r 21,1, 0P -
—Cos70,,7SINTD,,T 21, 1, +SiN7D,T SIN7D,,T |y,

Collecting the terms together and noting that cos’@+ sin’6=1 the fina
result isjust 11x. Inwords, the effect of the coupling has been refocused.

2.4.3.2 Sequencec

As there is no 180° pulse applied to spin 1, the offset of spin 1 is not
refocused, but continues to evolve for time 2The evolution of the
coupling is easy to calculate:

|, O EPE e - cosm,r 1, +sinmd,T 21,1,
This time the 180%) pulse is applied to spin 2
oS, T |y, +sinmd,T 21,1, O - cosm,r 1, —sin,r 21,1,

The results is exactly as for sequebd&qn. [2.5]), so the final result is the
same.e. the coupling is refocused.

2.4.3.3 Summary

In heteronuclear systems it is possible to choose whether or not to allow the
offset and the coupling to evolve; this gives great freedom in generating and
manipulating anti-phase states which play a key role in multiple pulse NMR
experiments.

2.5 Multiple quantum terms

25.1 Coherenceorder

In NMR the directly observable quantity is the transverse magnetization,
which in product operators is represented by terms su¢hx asd 21,.

Such terms are examples of single quantum coherences, or more generally
coherences with ordep, = 1. Other product operators can also be
classified according to coherence ordey. 2111, hasp = 0 and 2yl,, has

bothp = 0 (zero-quantum coherence) and +2 (double quantum coherence).
Only single quantum coherences are observable.

In heteronuclear systems it is sometimes useful to classify operators
according to their coherence orders with respect to each spin. So, for
example, Pyl hasp = 0 for spin 1 ang = =1 for spin 2.

2-14



2.5.2 Raising and lowering operators

The classification of operators according to coherence order is best
carried out be re-expressing the Cartesian operators I, and |y in terms of the
raising and lowering operators, | and I_, respectively. These are defined as
follows

=1 +il, =1, -l [2.6]

where i is the square root of —1 (further details of why these operators are
called the raising and lowering operators will be given in lecturd.lhas
coherence order +1 arld has coherence order —1; coherence order is a
signed quantity.

Using the definitions of Eqn. [2.6} andl, can be expressed in terms of
the raising and lowering operators

X

N~

(L+12)  1,=2(.-1) [2.7]

from which it is seen that |, and Iy are both mixtures of coherences with p =
+1 and -1.

The operator producti gl can be expressed in terms of the raising and
lowering operators in the following way (note that separate operators are
used for each spitj. and I.)

[2.8]

The first term on the right of Eqn. [2.8] has p = (+1+1) = 2 and the second

term has p = (-1-1) = —2; both are double quantum coherences. The third
and fourth terms both haye= (+1-1) = 0 and are zero quantum coherences.
The value ofp can be found simply by noting the number of raising and
lowering operators in the product.

The pure double quantum part of.P. is, from Eqn. [2.8],

double quantum part[ZI 1XI2X] = %(I P 2_) [2.9]

The raising and lowering operators on the right of Egn. [2.9] can be re-
expressed in terms of the Cartesian operators:

(11, +1,1,) =%[(|1x il 1o #i00y ) # (100 =i, )12 —ilzy)]

=4[21,1,, +21,1,]

1y "2y
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aa t B B spin2
a p o f spin3
The doublet of doublets from
spin 1 coupled to two other
spins. The spin states of the
coupled spins are also
indicated.

So, the pure double quantum part of 2l IS %(lexl2X +21,1 ); by a

ly " 2y
similar method the pure zero quantum part can be shown to be

%(ZI w2 =2l lyI2y) . Some further useful relationships are given in section
29

2.5.3 Definition of coherence order

The formal definition of coherence order depends on the response of a
particular operator to arotation about the z-axis. A coherence or operator of
order p acquires a phase pgwhen rotated about the z-axis through an angle

@
ol?) O PPEY PRMMT - ol exp(-ipg)

This property will be used extensively as part of the description of
coherence selection by phase cycling or gradient pulses, lecture 4.

2.6 Three spins

The product operator formalism can be extended to three or more spins. No
really new features arise, but some of the key ideas will be highlighted in
this section. The description will assume that spin 1 is coupled to spins 2
and 3 with coupling constants J;» and Ji3; in the diagrams it will be
assumed that Jq» > Ji3.

2.6.1 Typesof operators

l1x represents in-phase magnetization on spin 1, 2ll,, represents
magnetization anti-phase with respect to the coupling to spin 2 and 2l1l3;
represents magnetization anti-phase with respect to the coupling to spin 3.
411,12, 3, represents magnetization which is doubly anti-phase with respect to
the couplings to both spins 2 and 3.
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As in the case of two spins, the presence of more than one transverse
operator in the product represents multiple quantum coherence. For
example, 2lilo is a mixture of double- and zero-quantum coherence
between spins 1 and 2. The product 41,243, is the same mixture, but anti-
phase with respect to the coupling to spin 3. Products such as 4l 1yl ol ax
contain, amongst other things, triple-quantum coherences.

2.6.2 Evolution

Evolution under offsets and pulses is simply a matter of applying
sequentially the relevant rotations for each spin, remembering that rotations
of spin 1 do not affect operators of spins 2 and 3. For example, the term
2l 1412, evolves under the offset in the following way:

21,1, 08 - 08 - 08 - cosQut 21,1, +sinQit 21,1,

The first arrow, representing evolution under the offset of spin 1, affects
only the spin 1 operator 1. The second arrow has no effect as the spin 2
operator 1,, and this is unaffected by a z-rotation. The third arrow also has
no effect as there are no spin 3 operators present.

The evolution under coupling follows the same rules as for a two-spin
system. For example, evolution of 11« under the influence of the coupling to
spin 3 generates 21113,

I, O PP - cosrdygt 1y, +sin7dyt 21,1,

Further evolution of the term 214y I3, under the influence of the coupling to
Spin 2 generates a double anti-phase term

21,1, O & cosmpt 21,1, —sinmdygt 411,15,

In this evolution the spin 3 operator if unaffected as the coupling does not
involve this spin. The connection with the evolution of |1, under a coupling
can be made more explicit by writing 213, as a"constant” y

yly, OEPEE L cosmy,t yly, —sinmdyt 2p1,,1,
which compares directly to

l,, O & cosmt 1, —sinmt 21,1,
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2.7 Alternative notation

In this chapter different spins have been designated with a subscript 1, 2, 3
... Another common notation is to distinguish the spins by using a different
letter to represent their operators; commonly | and S are used for two of the
symbols

2|1x|22 = 2IXSZ

Note that the order in which the operators are written is not important,
although it is often convenient (and tidy) aways to write them in the same
sequence.

In heteronuclear experiments a notation is sometimes used where the
letter represents the nucleus. So, for example, operators referring to protons
are given the letter H, carbon-13 atoms the letter C and nitrogen-15 atoms
the letter N; carbonyl carbons are sometimes denoted C'. For example,
ACH N, denotes magnetization on carbon-13 which is anti-phase with
respect to coupling to both proton and nitrogen-15.

2.8 Conclusion

The product operator method as described here only applies to spin-half
nuclei. It can be extended to higher spins, but significant extra complexity
is introduced; details can be found in the article by Sgreetsan (Prog.
NMR Spectrosc. 16, 163 (1983)).

The main difficulty with the product operator method is that the more
pulses and delays that are introduced the greater becomes the number of
operators and the more complex the trigonometrical expressions multiplying
them. If pulses are either 90° or 180° then there is some simplification as
such pulses do not increase the number of terms. As will be seen in lecture
3, it is important to try to simplify the calculation as much as possible, for
example by recognizing when offsets or couplings are refocused by spin
echoes.

A number of computer programs are available for machine computation

using product operators within programs suchMashematica or Maple.
These can be very labour saving.
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2.9 Multiple -quantum coherence

2.9.1 Multiple-quantum terms

In the product operator representation of multiple quantum coherences it is
usual to distinguish between active and passive spins. Active spins
contribute transverse operators, such as Iy, Iy and 1., to the product; passive
spins contribute only z-operators, ;. In a sense the spins contributing
transverse operators are "involved" in the coherence, while those
contributing z-operators are simply spectators.

For double- and zero-quantum coherence in which spinsi and | are active
it is convenient to define the following set of operators which represent pure
multiple quantum states of given order. The operators can be expressed in
terms of the Cartesian or raising and lowering operators.

double quantum, p = +2

DQW) = 4(21, 1, -21,1, )= 3(1.1 ., +11 )
DQY) =4(21, 1, +21,1, )= #(1.1,, -1.1,)
zero quantum, p=0

zQU = 2(21,0, +21,0, )= 21,1, 1,0,
zQU =221, -21,0, )= 2 (10— )

2.9.2 Evolution of multiple -quantum terms

2.9.2.1 Evolution under offsets

The double- and zero-quantum operators evolve under offsets in a way
which is entirely analogous to the evolution of Iy and |, under free
precession except that the frequencies of evolution are (2 + ) and (2 —
) respectively:

Qi o H'Efey - cod@, +0))
pQl) o H'efer - cod@, +0))

J

t DQE(‘J) +sin(Qi +Qj)t Dng)
(oci)-sr(o, -0 ool
ZQ(Xii) 0 TP - cod Q, —Qj)t ZQ(Xii) +sin(Qi —Qj)t ZQ(y”)

QW 0¥y . codQ, -0, J1zQW -sin(Q, -, J1zQl

J

2.9.2.2 Evolution under couplings

Multiple quantum coherence between spiasdj does not evolve under the
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influence of the coupling between the two active spins, i and j.

Double- and zero-quantum operators evolve under passive couplingsin a
way which is entirely analogous to the evolution of I, and Iy; the resulting
multiple quantum terms can be described as being anti-phase with respect to
the effective couplings:

DQU M . cosrdpqt DQUW +cosmlyg 4t 21, DQY
DQY [ . cosrdpget DQU —sin/yg .t 21,,DQY
zQ M . cos7,q 4t ZQW +sinm,q 4t 21,,2QY
zQW M ~ o870t ZQY —sinq it 21,,2QY

Joor 1S the sum of the couplings between spin i and all other spins plus the
sum of the couplings between spin j and all other spins. J, 4 is the sum of

the couplings between spin i and al other spins minus the sum of the
couplings between spin j and all other spins.

For example in a three-spin system the zero-quantum coherence between
spins 1 and 2, anti-phase with respect to spin 3, evolves according to

21,2Q% M - cos7D gt 21,,2Q0? —sin7, t ZQY
where JZQeff =J, —Jy

Further details of multiple-quantum evolution can be found in section 5.3
of Ernst, Bodenhausen and Wokaun Principles of NMR in One and Two
Dimensions (Oxford University Press, 1987).
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