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Abstract

This paper describes a number of improvements to a method, developed in this
laboratory and described in J. Magn. Reson. 85 (1989) 111-113, which makes it
possible to determine values of long-range 13C–1H coupling constants from HMBC
spectra. Firstly, it is shown how pulsed-field gradients can be introduced into the
HMBC experiment without perturbing the form of the cross-peak multiplets; a one-
dimensional version of the experiment is also described which permits the rapid
measurement of a small number of couplings. Secondly, the experiment is modified
so that one-bond and long-range cross peaks can be separated, and so that the
one-bond cross peaks have more reliable intensities. Finally, it is shown how these
one-bond cross peaks can be used to advantage in the fitting procedure.
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1 Introduction

The HMBC (heteronuclear multiple bond correlation) [1] experiment has be-
come the standard way of detecting the presence of long-range 13C–1H cou-
plings in small- to medium-sized molecules. However, from such a spectrum
it is not at all straightforward to determine the numerical value of the cou-
pling constant. The difficulty derives from the fact that the multiplets in the
proton (F2) dimension have complex phase properties due to the evolution of
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proton–proton couplings and proton chemical shifts (offsets); in addition, the
long-range coupling appears as an anti-phase splitting. It is thus not possible
to identify, from the multiplet, a splitting which corresponds to the value of
the long-range coupling constant.

Previous work from this laboratory [2] introduced a fitting procedure which
makes it possible to determine a value for the long-range coupling constant
from an HMBC multiplet. The procedure works by comparing the HMBC mul-
tiplet with the corresponding multiplet from a conventional proton spectrum
(called the template); a least-squares fitting procedure, involving just two pa-
rameters, yields a value for the long-range C–H coupling. If the conventional
proton spectrum is crowded, the proton multiplets needed for the fitting pro-
cedure can be obtained from two-dimensional spectra provided that the mul-
tiplets are in-phase and otherwise undistorted. For example, such multiplets
can be obtained from TOCSY spectra [3] in which the anti-phase dispersive
contributions have been suppressed effectively [4].

In this paper we describe a number of developments of this basic approach.
Firstly, the HMBC experiment is updated by the use of gradient pulses so that
high-quality data can be obtained; we also discuss the problem of phasing such
spectra. Secondly, an experimental approach is described which makes it pos-
sible to obtain, from one set of experimental data, both the HMBC spectrum
and a complete one-bond correlation spectrum from which templates can be
obtained. Obtaining the templates in this way is convenient as, compared to
the conventional proton spectrum, the likelihood of overlap is reduced. We
also introduce a new way in which these one-bond cross peaks can be used
in the fitting procedure. The utility of the whole approach is illustrated by
measuring the values of numerous long-range couplings in strychnine.

Finally, we introduce a one-dimensional version of the HMBC experiment
which results in multiplets that can be analysed in the same way as those from
the two-dimensional experiments. In cases where only a few couplings are of
interest, a selective experiment such as this may be an attractive alternative
to recording a two-dimensional experiment.

The fitting procedure itself is not computationally demanding and can be
implemented on a desk-top computer. A program, designed to work within
Bruker’s XWIN-NMR c© and available without charge from the authors’ web
site, has been developed to carry out the fitting procedure.
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2 The basic HMBC experiment and fitting procedure

The way in which the fitting procedure works and the required modifications
to the HMBC experiment have been described in the earlier work from this
laboratory [2]. However, it is useful to repeat these here as they form the basis
for the description of subsequent modifications, which are the topic of this
paper.

[Fig. 1 about here.]

The pulse sequence for the basic HMBC experiment is shown in Fig. 1 (a).
Proton magnetization excited by the first pulse evolves during the preparation
delay, ∆, to become anti-phase with respect to the long-range C–H coupling;
this anti-phase magnetization is converted into heteronuclear multiple quan-
tum coherence by the first 13C pulse. The coherence evolves for time t1 during
which it acquires a phase label according to the 13C offset; the evolution of
the proton offset during t1 is refocused by the centrally-placed 180◦ pulse on
proton. Finally, the second 13C pulse returns the multiple quantum coher-
ence to proton magnetization which is anti-phase with respect to the (active)
long-range C–H coupling.

Although the proton 180◦ pulse refocuses the evolution of the proton offset over
the time t1, both the offset and any proton–proton couplings evolve throughout
the delay ∆, thus giving rise to a phase modulation of the observed signal. As
∆ has to be comparable with 1/(2 nJCH), the evolution of any proton-proton
couplings present is certainly significant. It is this modulation, combined with
the presence of the anti-phase splitting with respect to the C–H coupling, that
gives the HMBC multiplet its complex phase properties.

For the fitting procedure to work correctly, it is essential that the phase mod-
ulation in the HMBC experiment is identical to that which would arise from
a simple delay ∆. In the basic HMBC experiment this is not the case, due to
the the presence of the proton 180◦ pulse. However, the required phase mod-
ulation can be achieved by adding a second proton 180◦ pulse at the end of
t1, as shown in Fig. 1(a). This extra pulse effectively restricts the refocusing
effect of the first 180◦ pulse to the t1 period. From now on we will assume
that it is this slightly modified form of the HMBC experiment which is being
discussed.

The HMBC spectrum is invariant to the sign of the C–H coupling, so the fitting
procedure can give no information in this regard. Therefore, throughout this
work we are only able to quote the magnitude of the coupling constant.
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2.1 The fitting procedure (Method I)

The way in which the fitting procedure works is best envisaged in the time
domain. If we imagine taking a cross-section parallel to F2 (the proton dimen-
sion) through a cross peak in an HMBC spectrum, the time-domain signal
corresponding to the cross peak can be written as

SHMBC(t2) = AHMBC × Sproton(t2 + ∆) × sin (πJCHt2) (1)

where JCH is the long-range coupling responsible for the cross peak and AHMBC

is the overall amplitude; the factor sin (πJCH∆), which describes the depen-
dence of the amplitude of the cross peak on the preparation delay, is included
in AHMBC. In Eq. 1 the term sin (πJCHt2) results in the observed multiplet
being anti-phase with respect to the active coupling JCH.

Sproton is the time-domain signal corresponding to the normal proton multiplet,
with no C–H coupling present, such as would be acquired in a conventional
pulse–acquire experiment. This signal can be written as:

Sproton(t2) = exp (iΩH1t2) ×
∏
i

cos (πJH1Hi
t2) (2)

where ΩH1 is the offset of the proton involved in the cross peak (proton 1)
and JH1Hi

is the coupling of proton 1 to proton i. The product of cosine terms
simply expresses, in the time domain, the successive in-phase splittings that
each of these couplings causes. Note that, in contrast to the anti-phase C–H
coupling, these in-phase H–H couplings are represented by cosine terms.

In the expression for SHMBC(t2), Eq. 1, the term Sproton(t2 + ∆) shows that at
the start of acquisition (i.e. t2 = 0) there has already been evolution of the
proton offset and proton–proton couplings for time ∆.

The basis of our fitting method is the observation that the phase modulation
due to the evolution of the proton offset and proton-proton couplings during
delay ∆ in the HMBC experiment is identical in form to that found for the
simple 90◦–∆–acquire(t2) sequence. The signal from this experiment can be
written

S1D(t2) = Sproton(t2 + ∆). (3)

The only differences between S1D(t2) and the signal from the HMBC cross
peak (SHMBC(t2) of Eq. 1) are the amplitude and the presence of the sine term
in the latter.
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The fitting procedure involves forming a trial multiplet by multiplying the
time-domain signal for the phase-modulated proton multiplet, S1D(t2) of Eq. 3,
by a trial amplitude, Atrial, and a sine term to create an anti-phase splitting,
sin (πJtrialt2):

Strial(t2) =Atrial × S1D(t2) × sin (πJtrialt2)

=Atrial × Sproton(t2 + ∆) × sin (πJtrialt2). (4)

We see that, provided Atrial = AHMBC and Jtrial = JCH, Strial(t2) becomes
identical to SHMBC(t2) of Eq. 1. This, then, is the basis of a fitting procedure
in which Atrial and Jtrial are varied until Strial(t2) and SHMBC(t2) match as
closely as possible. This is achieved by minimizing the following χ2 function:

χ2 =

t2,max∫

0

|Strial(t2) − SHMBC(t2)|2 dt2. (5)

In Eq. 5 we have allowed for the fact that the signals are complex. For con-
venience we refer to this original version of the fitting procedure as Method
I.

[Fig. 2 about here.]

It is convenient to perform the fitting routine in the time domain, but the
whole process can just as well be envisaged in the frequency domain; Fig. 2
illustrates the fitting process in the two domains.

The form of the phase modulation due to proton offsets and proton–proton
couplings is only the same in the 90◦–∆–acquire(t2) and HMBC experiments
if the modified HMBC experiment of Fig. 1 (a) is used. It is not actually nec-
essary to record the 90◦–∆–acquire(t2) experiment. Rather, we simply record
a conventional proton spectrum and then left shift the time-domain signal by
a number of data points corresponding to the time ∆.

It is important to make sure that, for both the HMBC spectrum and the
normal proton spectrum, we deal with a single multiplet. This is achieved
by excising the relevant multiplet from a one-dimensional spectrum or cross
section through a two-dimensional spectrum, by setting to zero all of the data
points which do not define the multiplet. Having done this, the spectrum is
inverse Fourier transformed to generate the time-domain signal, SHMBC(t2) or
Sproton(t2). Only then is the left shift applied to Sproton(t2) in order to create
the phase modulation.

As an absorption mode spectrum has the best resolution, it is usual to phase
the proton spectrum to absorption before the wanted multiplet is excised.
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However, although the real part of the (phased) spectrum is in the absorp-
tion mode, the imaginary part will contain the much broader dispersion mode
multiplet. To get around this problem we excise the absorption mode multi-
plet from the real part of the spectrum and then generate the corresponding
imaginary part using a Hilbert transform; further details can be found in ref-
erence [5]. The resulting complex frequency-domain signal can then be inverse
Fourier transformed to give the required time-domain signal.

3 Introducing gradients into the HMBC experiment

For the fitting procedure to work as planned, it is clearly important that the
HMBC spectra are of the highest quality. The use of pulsed field gradients
for coherence selection is therefore to be recommended, as it is known that
spectra recorded in this way are generally superior to those recorded using
phase cycling.

There are many different ways in which gradients can be implemented into
the HMBC experiment, but for the fitting procedure described in the previous
section to be applicable, we have to be careful to ensure that the resulting
multiplets have exactly the same phase properties as those obtained from the
sequence of Fig. 1(a).

One implementation which satisfies these requirements, and which we have
found to yield good spectra, is shown in Fig. 1(b). This sequence is the same
as that proposed by Cicero et al. [6] but with the addition of an extra 180◦

pulse on proton at the end of t1. As with sequence (a), this extra pulse is
needed so as to ensure that the proton evolution is identical to that of the
simple 90◦–∆–acquire(t2) experiment. In fact, because of the extra delays δ
needed to accommodate the gradients, the proton offsets and couplings evolve
for a time (∆ + 2δ); this total delay must be used when constructing the trial
multiplet.

The 180◦ pulse on carbon allows selection of the required coherence order by
the two gradients G1 and G2; this pulse also refocuses any evolution of the
carbon offset which takes place during the two gradients. The gradient ratio,
G1/G2, is set to −4.975/2.975 to record N -type data and −2.975/4.975 to
record P -type data. These two data sets are subsequently recombined in the
usual way to give a frequency-discriminated, absorption mode spectrum [7].
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3.1 Phase correction

The presence during t1 of several pulses of finite duration makes it impossible
to acquire data for t1 = 0, leading to large frequency-dependent phase errors
in the F1 (carbon) dimension. While these can, in principle, be removed by
manual phasing in the usual way, such large linear phase corrections tend to
resulted in distorted baselines. However, Zhu et al. [8] have shown that if the
phase error across the spectrum is 180◦ or 360◦, subsequent correction does
not lead to such baseline distortions. Thus, all that is required is that the
initial value of t1 be chosen to achieve such a phase error of 180◦ or 360◦.

Referring to Fig. 1 (b), the delays during which the carbon offset evolves can be
identified as: the first period t1/2, the duration of the first proton 180◦ pulse,
the second period t1/2, and the duration of the second proton 180◦ pulse. The
evolution over the two delays δ is, to a good approximation, refocused by the
carbon 180◦ pulse.

Suppose that the initial value set for the delay t1/2 is t1,min/2. Then, for the
first increment of the two-dimensional experiment, the time for which the
carbon offset evolves, t

(0)
1 , is

t
(0)
1 = 2 × (t1,min/2) + 2 × t180, (6)

where t180 is the duration of the 180◦ pulses. Zhu et al. show that a linear
phase correction of (n × 180◦) (where n is an integer) will be obtained if t

(0)
1

satisfies

t
(0)
1 =

n

2
δ1, (7)

where δ1 is the increment of t1, set by the required spectral width in F1. In
practice, t1,min/2 is chosen so that Eq. 7 is satisfied. Finally, it should be noted
that as the time point t1 = 0 is not being sampled, it is not necessary to halve
the value of the first data point.

For example, in the experiments reported below the F1 spectral width of 181
ppm (22624 Hz at a proton frequency of 500 MHz) gives a t1 increment, δ1,
of 44.2 µs. The 180◦ pulse-length, t180, was 22.0 µs, so Eq. 7 can be satisfied
for n = 2 by choosing t1,min/2 = 0.1 µs.

In F2 there is, in general, no phase correction which will result in absorption
mode multiplets; phase correction is, therefore, superfluous. However, it is
desirable to phase the proton spectrum from which the templates are to be
taken so as to minimize the overlap between multiplets. If this is done, it is
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essential to apply the same correction to the HMBC spectrum so that the
multiplets are comparable. An alternative, which we have found convenient, is
leave the HMBC spectra unaltered and to simply “undo” the phase correction
of the proton spectrum by applying to the template the opposite of the original
phase correction after the multiplet has been excised.

There is one further matter to take into account in respect of the phase in
F2. This is the fact that, all other things being equal, there is a 90◦ phase
difference between the peaks in the HMBC and in the proton spectrum. In
the simple proton experiment it is the in-phase magnetization which is the
origin of the observed signal. In contrast, in the HMBC experiment, the proton
magnetization which is anti-phase with respect to the 13C ultimately leads to
the observed signal. The evolution of in-phase magnetization (e.g. I1y) to anti-
phase magnetization (e.g. 2I1xSz) involves a shift from the y- to the x -axis; this
is the origin of the 90◦ phase shift between the two spectra. In practice, this
phase shift is accounted for by multiplying the trial multiplet by exp (iπ/2) = i
prior to the fitting i.e. Atrial should be purely imaginary.

[Fig. 3 about here.]

Figure 4 shows the result of the fitting procedure applied to the C8–H13 cross-
peak multiplet from strychnine (structure and numbering shown in Fig. 3).
With the correct choice of the two parameters, there is clearly an excellent fit
between the trial multiplet and the multiplet from the HMBC. The contour
plot of χ2, as defined in Eq. 5, as a function of the two parameters shows that
the minimum is well defined so that it can easily be located by a simple search
program, such as the standard Levenberg–Marquardt algorithm [9].

[Fig. 4 about here.]

Typically, we construct this contour plot using quite a coarse grid of values
for the two parameters. This enables us to identify the approximate position
of the minimum, and then the values of the parameters at this point are used
as starting values for the Levenberg–Marquardt algorithm. Usually, this leads
to swift convergence.

The two modified versions of the fitting procedure described below involve
further parameters, so it is not easy to visualize how χ2 depends on their
values. In such cases we use the best estimates we can for these additional
parameters and then plot how χ2 depends on Jtrial and Atrial. The position of
the minimum identified in such a plot is used to obtain starting values for the
Levenberg–Marquardt algorithm which is then allowed to alter the values of
all of the parameters. When using this approach, the minimum located by the
Levenberg–Marquardt algorithm may deviate somewhat from that seen in the
initial χ2 contour plot.
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4 Using one-bond cross peaks as templates

It is often the case that cross peaks arising from one-bond C–H correlations
appear in HMBC spectra. These one-bond cross peaks have identical structure
to the long-range cross peaks i.e. both are phase modulated by proton offsets
and couplings, and anti-phase with respect to the C–H coupling. However, as
the one-bond coupling is much larger than the width of the proton multiplet,
the one-bond and long-range cross peaks look rather different. For the one-
bond cross peak we see two clearly separated proton multiplets, separated by
the one-bond coupling and disposed symmetrically about the proton offset. In
contrast, the long-range cross peak appears as a single complex multiplet.

Sheng et al. [10] have described a version of the fitting procedure which uses
these one-bond cross peaks as the templates. Such an approach is certainly
attractive as all of the data needed to determine a value for the long-range
coupling constant can be obtained from a single experiment. In addition, there
is likely to be less overlap of the multiplets than in the simple proton spectrum.
However, there are two difficulties with using these one-bond cross peaks. The
first is that for a typical value of ∆ of around 50 to 100 ms, even the modest
spread in the values of one-bond couplings results in a large variation in the
intensity of the cross peaks. Indeed, it is quite common for a significant number
of the possible one-bond cross peaks to be absent. The second difficulty is that
the one-bond cross peaks may overlap the long-range cross peaks, making it
impossible to use either for data fitting.

It would therefore be desirable to modify the HMBC experiment so that the
one-bond cross peaks have reliable intensities, and so that the two types of
cross peaks can be separated. The latter aim can be achieved using the MBOB
method developed by Schulte-Herbrüggen et al. [11]. First, we will describe
the basis of this method and then go on to describe how a similar approach
can be used to achieve more reliable intensities for the one-bond cross peaks.

4.1 Separating one-bond and long-range cross peaks

[Fig. 5 about here.]

The way in which the MBOB method works can be understood by referring to
Fig. 5. The thick and thin solid lines show how the amplitude of the one-bond
cross peaks vary with the preparation delay, ∆, for two different values of
the one-bond coupling constant; the rapid modulation is a result of the large
coupling constant. The grey line shows a similar curve for the much smaller
long-range coupling; in contrast, rather than an oscillation we just see a steady
rise. All the curves are plots of the function sin (πJ∆) — all that is different
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is the size of the coupling constant, J.

Consider recording two experiments with the preparation delays indicated by
a and a′, separated by 1/(1JCH). Due to the properties of the sine wave, the
amplitudes of the one-bond cross peaks in these two experiments will be equal
and opposite. Thus, if the two experiments are added together, the one-bond
cross peaks will cancel. In contrast, the amplitude of the long-range cross
peaks for these delays a and a′ are both positive and more or less the same;
adding the two experiments together will reinforce these cross peaks. On the
other hand, if the two experiments are subtracted, the one-bond cross peaks
will be retained and the long-range cross peaks will more or less cancel. With
this approach, separate one-bond and long-range spectra can be obtained from
the same two data sets.

Figure 1 (c) shows how Schulte-Herbrüggen et al. implement this idea by intro-
ducing a mobile 13C 180◦ pulse at the start of the sequence. The preparation
delay ∆ is extended by a time ∆0 and the extra 180◦ pulse is placed during
∆0 and at a time τf after the start of the sequence; τf can vary between zero
and ∆0.

For this simplest MBOB experiment (called a first-order filter) ∆0 is set to
1/(2 1JCH) a delay which, for compatibility with the subsequent discussion, we
will call τ1. Two separate experiments are recorded for each value of t1: in the
first τf = τ1 = 1/(2 1JCH); in the second τf = 0.

When τf = 0 the C–H coupling evolves for the whole time (∆ + τ1). When
τf = τ1, the 180◦ pulse forms a spin echo which refocuses the evolution of
the coupling at a time 2τ1 after the start of the sequence; thus the C–H
coupling evolves for time (∆ − τ1). The effective time for which the coupling
evolves in the two experiments thus differs by 2τ1 which, as τ1 = 1/(2 1JCH),
is the required difference of 1/(1JCH). The advantage of varying the effective
preparation delay in this way is that the proton offsets and the proton–proton
couplings evolve for time (∆ + τ1) in both cases.

Expressed mathematically, the amplitudes of the cross-peaks in the two ex-
periments vary as a function of the preparation delay in the following ways:

Expt. 1 : sin (πJ(∆ − τ1)) Expt. 2 : sin (πJ(∆ + τ1)) (8)

where Expt. 1 and Expt. 2 correspond to τf = τ1 and τf = 0, respectively.
The sum and difference of these two can be written, using some elementary
trigonometry, as:

Sum = Expt. 1 + Expt. 2 = 2 sin (πJ∆) cos (πJτ1)

Difference = Expt. 1 − Expt. 2 = −2 cos (πJ∆) sin (πJτ1).
(9)
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For the long-range cross peaks, (πJτ1) is a very small angle so cos (πJτ1) ≈ 1
and sin (πJτ1) ≈ 0. As a result, the long-range cross peaks appear only in the
sum spectrum. For the one-bond cross peaks, (πJτ1) is approximately (π/2),
so cos (πJτ1) ≈ 0 and sin (πJτ1) ≈ 1. As a result, the one-bond cross peaks
appear only in the difference spectrum.

The separation is not perfect in part due to the range of values taken by the
one-bond C–H coupling making it necessary to choose a compromise value
of τ1. Schulte-Herbrüggen et al. show that the separation can be improved
by constructing higher-order MBOB filters. For example, a second-order filter
involves recording four experiments in which the delay τf takes the successive
values (0, τ1, τ2, τ1 + τ2), and where the delay ∆0 is (τ1 + τ2). The values of τ1

and τ2 are given by

τ1 =
1

2[1JCH,min + 0.146(1JCH,max − 1JCH,min)]
(10)

τ2 =
1

2[1JCH,max − 0.146(1JCH,max − 1JCH,min)]
, (11)

where 1JCH,min and 1JCH,max are the lower and upper bounds of the expected
range of one-bond coupling constants. The sum of all four experiments contains
just the long-range cross peaks, whereas the one-bond correlations appear in
the combination of experiments (1 − 2 − 3 + 4).

4.2 Generating more reliable intensities for one-bond cross peaks

The problem with the intensities of the one-bond cross-peaks is illustrated
clearly by Fig. 5. It would be quite possible to choose accidentally a prepara-
tion delay which resulted in zero (or close to zero) intensity for a particular
one-bond cross peak. Of course, a small change in the delay would result in
this cross-peak gaining significant intensity, but then another cross-peak aris-
ing from a different value of the one-bond C–H coupling constant might have
zero intensity. In general, there is no way of choosing a value of the preparation
delay such that all one-bond cross peaks will appear with significant intensity.

The broadband MBOB experiment [11] involves adding together, in absolute
value mode, experiments recorded using different values of the preparation
delay, and so the one-bond cross peaks are present with reliable intensities.
However, such an approach is not suitable for our purposes as phase-sensitive
data is needed by the fitting procedures.

Our solution to the problem of generating reliable intensities for one-bond
cross peaks uses an approach similar to the MBOB filter. Two experiments
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are recorded with values of the preparation delay which differ by 1/(2 1JCH).
Suppose the two delays correspond to b and b′, shown in Fig. 5. For a one-bond
coupling constant of 135 Hz, shown by the thick solid line, the amplitude is
positive when the delay is b and negative when the delay is b′. Thus, we would
obtain greater overall amplitude by subtracting the two experiments. On the
other hand, for a one-bond coupling constant of 125 Hz, shown by the thin
solid line, the amplitudes are positive at both b and b′, so the appropriate
action would be to add the two experiments together.

In general, as the value of the one-bond coupling is unknown, we cannot
determine in advance whether to add or subtract the two spectra. Rather,
both combinations are computed, and then the most intense cross peaks are
selected from one or the other. To determine the separation of times b and b′

we use an average value of the one-bond coupling constant, as in the first-order
MBOB filter.

The experimental implementation of this approach is the same as for the
MBOB experiment, Fig. 1 (c). However, for the present purpose, the extra
delay ∆0 needs to be 1/(4 1JCH); to avoid confusion with the previous section
we will call this delay τ0. Two experiments are recorded, one with τf = τ0 and
one with τf = 0. Thus, in the two experiments the C–H coupling evolves for
(∆ − τ0) and (∆ + τ0), respectively.

Following the same analysis as before, the amplitudes of the one-bond cross
peaks in the sum and difference of the two experiments are

Sum =2 sin
(
π 1JCH∆

)
cos

(
π 1JCHτ0

)

Difference =−2 cos
(
π 1JCH∆

)
sin

(
π 1JCHτ0

)
. (12)

As τ0 = 1/(4 1JCH), cos (π 1JCHτ0) and sin (π 1JCHτ0) are both 1/
√

2:

Sum =
√

2 sin
(
π 1JCH∆

)

Difference =−
√

2 cos
(
π 1JCH∆

)
. (13)

As was mentioned above, whether the sum or difference has the greater signal
depends on the precise values of the one-bond coupling and the preparation
delay, ∆. However, the key point is that this approach guarantees that all
of the one-bond cross peaks will appear in either the sum or the difference
spectrum with reasonable intensities.
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4.3 Combining the two approaches

The separation of the one-bond and long-range cross peaks by a first-order
MBOB filter can be achieved at the same time as generating more reliable
intensities for the one-bond cross peaks by recording four separate experiments
in which the C–H coupling is allowed to evolve for the effective times, ∆eff ,
given in the following Table 1.

Table 1
Values of ∆eff and τf needed for a first-order MBOB filter,
together with more reliable intensities for one-bond cross

peaks, in the modified HMBC sequence of Fig. 1 (d)

experiment ∆eff τf

1 ∆ + τ0 + τ1 0

2 ∆ − τ0 + τ1 τ0

3 ∆ + τ0 − τ1 τ1

4 ∆ − τ0 − τ1 τ0 + τ1

As before, τ0 = 1/(4 1JCH) and τ1 = 1/(2 1JCH). These four experiments can
be achieved experimentally using the pulse sequence shown in Fig. 1 (d) with
the value of the delay τf from the table and with ∆0 set to (τ0 + τ1).

The combination (1 + 2 + 3 + 4) can be shown to have the following variation
of cross-peak intensity

4 sin (πJ∆) cos (πJτ0) cos (πJτ1). (14)

This is the combination in which, on account of the last term, the one-bond
cross-peaks are suppressed. The long-range peaks are present at full intensity
as, for small couplings, the last two terms are both very close to one.

There are two combinations in which the long-range cross peaks are sup-
pressed. The combination (1 + 2− 3− 4) has the following variation of cross-
peak intensity

4 cos (πJ∆) cos (πJτ0) sin (πJτ1), (15)

whereas the combination (1 − 2 − 3 + 4) has the following variation

4 sin (πJ∆) sin (πJτ0) sin (πJτ1). (16)
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These two combinations have little intensity from the long-range cross-peaks
on account of the sin (πJτ1) and sin (πJτ0) terms. As before, which experiment
has the greatest intensity for the one-bond cross peaks depends on the exact
values of the one-bond coupling and the delay ∆.

[Fig. 6 about here.]

The separation of the long-range and one-bond cross peaks can be improved
by using a second-order MBOB filter. If this is combined with our method
for giving more reliable intensities for the one-bond cross peaks, a total of
eight separate experiments have to be recorded with the values of τf given in
Table 2; ∆0 is set to (τ0 + τ1 + τ2).

Table 2
Values of ∆eff and τf needed for a second-order MBOB filter,

together with more reliable intensities for one-bond cross
peaks, in the modified HMBC sequence of Fig. 1 (d)

experiment τf experiment τf

1 0 5 τ0

2 τ1 6 τ0 + τ1

3 τ2 7 τ0 + τ2

4 τ1 + τ2 8 τ0 + τ1 + τ2

The sum of all eight experiments gives a spectrum in which only the long-
range cross peaks are present. The other two combinations which contain only
the one-bond cross peaks are : (1− 2− 3 + 4 + 5− 6− 7 + 8), the intensity in
which depends on sin (πJ∆), and (1− 2− 3 + 4− 5 + 6 + 7− 8), the intensity
in which depends on cos (πJ∆).

Figure 6 shows spectra of strychnine recorded using this approach. The spectra
demonstrate both the clean separation of long-range and one-bond cross peaks
which can be obtained, and the different intensities of the cross peaks in the
two combinations (b) and (c) in which only one-bond cross peaks appear.

5 Fitting using one-bond templates

As has been mentioned earlier, multiplets from the one-bond cross peak can
be used as templates in the fitting procedure so as to obtain estimates of
the long-range couplings. There are two ways to proceed: the first, originally
described by Sheng et al. [10], is to use one half of the one-bond cross peak as
a template; the second, described here for the first time, is to use the whole
cross peak as a template.
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The two halves of the one-bond cross peak are separated by 1JCH, which is
much greater than the typical width of a proton multiplet. We might therefore
expect that the two halves can be separated cleanly from one another. This
is the case if the multiplet is in absorption mode, but in HMBC spectra the
multiplets are in anything but absorption mode. When dispersion contribu-
tions are present, significant overlap between the two sides of the one-bond
cross peak can be seen, as shown by the fact that the baseline between them
does not return to zero (see, for example, Fig. 10 (a)). In such circumstances
an entirely clean separation of the two halves is not possible and this is why
it may be preferable to use the entire one-bond cross peak.

5.1 Fitting using one half of the one-bond cross peak: Method II

Both halves of the one-bond cross peak already have the necessary phase
modulation due to the evolution of proton offsets and proton–proton cou-
plings during the preparation delay. So, all that we need to do is excise one
side or the other, and then shift it by half of the one-bond coupling so that
the excised multiplet is centred at the proton shift. Then the anti-phase cou-
pling is introduced to create the trial multiplet which can be compared to the
HMBC multiplet, just as before. Shifting the multiplet by half of the one-bond
coupling is performed in the time-domain.

[Fig. 7 about here.]

The overall fitting process can be described in the following way and is also
illustrated in Fig. 7. The time-domain signal corresponding to a one-bond
cross peak can be written

Sone−bond(t2) = Aone−bond × Sproton(t2 + ∆) × sin
(
π 1JCHt2

)
. (17)

The final term is the one which gives rise to the large anti-phase splitting by
the one-bond coupling, 1JCH.

In order to separate out the two sides of the multiplet we write the sine in
terms of exponentials:

sin
(
π 1JCHt2

)
=

1

2i

[
exp

(
iπ 1JCHt2

)
− exp

(
−iπ 1JCHt2

)]
. (18)

Selecting the right or left part of the multiplet involves selecting just one of
these terms; arbitrarily we shall select the first one. Then the time domain
signal becomes
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Shalf one−bond(t2) =
1

2i
Aone−bond × Sproton(t2 + ∆) × exp

(
iπ 1JCHt2

)
. (19)

The shift required to centre the multiplet at the proton offset is (−π 1JCH)
rad s−1; this is achieved in the time domain by multiplying by exp (−iπ 1Jtrialt2).
We have allowed for the fact that we may not know the value of the actual
one-bond coupling, so will need to use a trial value, 1Jtrial.

The final step is to introduce the anti-phase long-range coupling by multiplying
by sin (πJtrialt2) and, as before, introducing an amplitude factor:

Strial(t2) =Atrial × Shalf one−bond(t2)

× sin (πJtrialt2) × exp
(
−iπ 1Jtrialt2

)

=
1

2i
Atrial Aone−bond × Sproton(t2 + ∆) × sin (πJtrialt2)

× exp
(
iπ 1JCHt2

)
× exp

(
−iπ 1Jtrialt2

)
. (20)

This function for the trial multiplet is compared with that for the long-range
cross peak (Eq. 1) in a least-squares fitting procedure. The parameters to be
adjusted are the trial amplitude, the trial long-range coupling and the trial
one-bond coupling. In practice, we have found that it is sufficient to estimate
the one-bond coupling from the spectrum and then just use this value for
1Jtrial without further adjustment.

[Fig. 8 about here.]

Figure 8 shows this version of the fitting procedure in action for the C8–H13
cross peak in strychnine. As before, with the correct choice of parameters, the
trial multiplet is an excellent fit for the long-range cross-peak multiplet.

5.2 Fitting using the entire one-bond cross peak: Method III

The second way of using the one-bond cross peak involves using the whole
cross peak, rather than just half of it. In contrast to the previous case, both
the one-bond and long-range cross peaks are manipulated.

[Fig. 9 about here.]

The fitting procedure involves splitting the long-range multiplet by a trial
anti-phase one-bond coupling, 1Jtrial, and splitting the whole one-bond cross
peak by a trial anti-phase long-range coupling, Jtrial. The two resulting multi-
plets are then compared in a least-squares fitting procedure with the overall
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amplitude and the two trial couplings being the adjustable parameters. The
whole process is illustrated in Fig. 9.

The fitting process can be described mathematically in the following way.
The long-range multiplet is described by the function SHMBC(t2) in Eq. 1;
this function is multiplied by sin (π 1Jtrialt2) to generate the large anti-phase
splitting

S ′
HMBC(t2) =SHMBC(t2) × sin

(
π 1Jtrialt2

)

=AHMBC × Sproton(t2 + ∆)

× sin (πJCHt2) × sin
(
π 1Jtrialt2

)
. (21)

The one-bond multiplet is described by the function Sone−bond(t2) of Eq. 17.
This function is multiplied by sin (πJtrialt2), to generate the small anti-phase
splitting; a trial amplitude is also included

S ′
one−bond(t2) = Atrial × Sone−bond(t2) × sin (πJtrialt2)

= Atrial Aone−bond × Sproton(t2 + ∆)

× sin
(
π 1JCHt2

)
× sin (πJtrialt2). (22)

We now see that provided the parameters Atrial, Jtrial and 1Jtrial have the
appropriate values, S ′

HMBC(t2) and S ′
one−bond(t2) are identical. The optimum

values of these parameters are found in a least-squares fitting procedure, as
described above. As before, we have found it sufficient to estimate 1Jtrial from
the spectrum and then leave this parameter fixed.

[Fig. 10 about here.]

Figure 10 shows this version of the fitting procedure in action for the C8–H13
cross peak in strychnine. As before, with the correct choice of parameters, the
two manipulated multiplets are in close agreement.

5.3 Isotope shifts

When using one-bond cross peaks as templates in the fitting process, it is
important to recognise that a one-bond and a long-range cross peak involving
the same proton may not be centred at precisely the same offset in F2. This
is because when the proton is directly attached to a 13C atom, as it is in
the molecules which lead to the one-bond cross peak, its chemical shift may
be slightly different to the case where the same proton is attached to a 12C
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atom, as it is for molecules which lead to the long-range cross peak. This small
difference is called an isotope shift.

The presence of this isotope shift means that the trial multiplet will never quite
match the HMBC multiplet no matter what values of the trial amplitude and
coupling are used. However, it is a simple matter to shift the offset of the trial
multiplet by multiplying it in the time domain by exp (iεt2), where ε is a trial
shift which may be positive or negative. This shift simply becomes another
parameter in the least-squares fitting procedure, and so its value is optimised
along with the values of the other parameters. Typically, we have found that
incorporating this shift significantly improves the fit between the trial and
HMBC multiplets. Shifts of up to 1 Hz are not uncommon.

It should be noted that in fitting method II, which uses half of the one-bond
cross peak, introducing this parameter to allow for isotope shifts is identical
to allowing variations in the value of the trial one-bond coupling.

The contour maps of χ2 as a function of Atrial and Jtrial shown in Figs. 8 and
10 are constructed using estimated values of the one-bond coupling and zero
isotope shift. The position of the minimum in these plots does not necessarily
correspond, therefore, to the position of the minimum which will be found
when all of the parameters are allowed to vary. For example, in the case
of Fig. 10, the χ2 plot shows a minimum at Jtrial = 7.0 Hz, but when the
isotope shift is allowed to vary, the Levenberg–Marquardt algorithm finds the
minimum to be at 6.4 Hz.

6 A one-dimensional experiment

From a two-dimensional HMBC experiment we should be able to measure a
value for the coupling constant from the majority of the cross peaks. Having
such complete data from one experiment is an advantage, but there may be
occasions when only a small part of the data is actually required — for exam-
ple, where a question of stereochemistry can be resolved by measuring just one
long-range coupling. In such situations, a selective one-dimensional version of
the HMBC experiment may well be an attractive option as it can be recorded
quickly and conveniently.

A large number of such selective experiments have been proposed over the
years [12]. For our present purposes, the main requirement is that the fitting
procedure developed for the two-dimensional HMBC can be applied to data
from the one-dimensional experiment. A pulse sequence which satisfies this
requirement is shown in Fig. 1 (e).
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This sequence is essentially an HMBC experiment in which t1 has been re-
placed by a selective echo on 13C; only long-range couplings to the carbon
(or carbons) which experience the selective 180◦ pulse will give rise to observ-
able signals. All other signals are suppressed effectively by the two gradients
which flank the selective pulse. The proton offset and proton–proton couplings
evolve for the total time (∆ + 2δ + tsel), where the time periods are defined in
Fig. 1 (e).

Ideally, one would like to decouple the protons during the selective pulse to 13C.
However, we have found it difficult to achieve this without at the same time
disrupting severely the evolution of the proton magnetization. In principle,
it should be possible to minimize this effect by applying complete cycles of
a cyclic decoupling sequence such as WALTZ-16 [13]; we have had limited
success with such an approach.

Since the selective pulse is applied to the proton-coupled 13C spectrum, the
bandwidth of the pulse must be set to encompass a multiplet split by the
large one-bond C–H coupling, unless it is a quaternary carbon which is being
excited. It is possible to set the selective pulse to excite part of the multiplet
(e.g. half of a doublet), although this will result in a loss of intensity.

The selective pulse is on resonance for the 13C of interest, so it is not necessary
to be concerned about the evolution of the offset. However, the pulse itself
may give rise to a phase shift and this in turn will lead to a phase shift of
the observed proton multiplet; clearly such a phase shift must be avoided as
its presence would invalidate the fitting procedure. Our experience has been
that with modern spectrometers, which are generally capable of attenuating
the radio-frequency power level without introducing significant phase shifts,
no problems associated with the phase of this selective pulse were found. If
such phase errors are a problem, then a solution would be to use a double echo
[14].

[Fig. 11 about here.]

Figure 11 shows three multiplets all arising from long-range correlations be-
tween H8, H23b and H23a to C12 in strychnine. Spectrum (a) was obtained
using the one-dimensional pulse sequence of Fig. 1 (f) whereas (b) was ob-
tained using the modified HMBC sequence of Fig. 1 (e). The data show that,
as is required, the one-dimensional experiment produces essentially identical
multiplets to those found in the two-dimensional HMBC. The multiplets from
the one-dimensional experiment can therefore be analysed in exactly the same
way as those from the two-dimensional experiment.
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Table 3. Values of long-range C–H couplings (in Hz)
in strychnine determined using different fitting procedures

C label H labela method I method III method II literature

15 13 3.5 3.4 6.6c

14 4.6 4.7 4.7c

8 6.3 6.4 6.3

12 0.6 0.8 1.2b

21 7.8 7.5 7.4b

14 15b 3.2 3.6 4.8c

13 3.3 3.5 3.8b, 4.6c

16 2.7 3.0

21 6.0 6.0 6.1b

7 17 3.2 † 3.1 3.2c

16/8 5.6 5.5

6 1.9 † 1.8

14 15a 1.8 2.8 2.8 3.2c

13 8.0 8.1 7.9c,7.7b

7 7.2 7.3 7.3c

16 4.5 4.3

12 0.9 2.3 2.1

21 0.9 1.4 1.9b

12 11b 7.0 6.9 7.1b

10 7.9 7.9 7.4b

14 20b 5.4 5.3 5.5c

18 3.5 3.1 3.4 3.6c

16 6.9 6.9

22 4.5 4.6

21 2.4 1.0 1.0

17 18b 5.6 5.1 4.9c

20 7.1 7.1 7.4c

13 11a 3.4d 3.3

12 2.5d 0.8 0.8 1.7b

10 5.8d 6.5 5.6 6.4b

17 18a 2.7 3.2 3.5 2.4c

7 4.6 5.2 5.2c

16 † 4.3

18 20a 9.3 9.6 9.5 9.5c

22 6.1 5.8

21 4.9 4.6

17 8 5.9 5.9 5.9c

7 2.5 2.4 2.6c

12 5.5 5.6 5.4b

6 3.7 3.7

5 3.2 3.1

12 23a 5.6 5.7

22 3.8 4.0

21 3.3 3.2

12 23b 8.6 8.2

22 4.0 3.9

21 8.5 8.3

8 12 5.8 5.9 5.8

23 2.4 6.8 2.4

10 † † 5.8

14 22 7.9 8.5 8.6 8.9c

20 4.9 5.6 5.1 12.5c, 5.7b

23 5.7 7.1 7.1 6.2b

2 4 7.5 7.4

6 5.5 5.5

5 0.9 0.8

adiastereotopic pairs labelled according to reference [15]. baverage value of
results quoted in reference [16]. ctaken from reference [15]. dtemplate taken
from TOCSY spectrum. †analysis failed to converge to a satisfactory result.



7 Results and discussion

Table 3 presents values for long-range couplings in strychnine which have been
measured using method I (taking the template from the proton spectrum) and
method III (using the whole one-bond cross peak as the template); a smaller
number of couplings have also been measured using method II (using half the
one-bond cross-peak as the template). Where they are available, the values of
these couplings reported in the literature are also given.

Generally speaking, for couplings greater than about 2.5 Hz, there is good
agreement between the values derived from the three methods; we can thus
have confidence in all of these methods. For smaller couplings, there tend to be
significant differences between the values determined by the different methods.
Such small couplings give rise to weaker cross peaks and, in addition, the anti-
phase splitting starts to become comparable with the linewidth. As a result,
the minimum in the χ2 map becomes shallower so that the precise location
of the minimum itself is more easily perturbed by noise or experimental im-
perfections; this is what accounts for the variation in the results given by the
different methods. For this data set, which is typical of what one might expect,
we conclude that it would be unwise to interpret, in a quantitative way, any
values below approximately 2.5 Hz. This limit can be lowered by improving
the signal-to-noise ratio (for example, by increasing ∆) and, if possible, the
resolution.

The shape of the χ2 map is also influenced by the form of the HMBC multiplet.
For example, multiplets which have complex structures, such as that shown
in Fig. 4 (b), tend to give χ2 maps in which there is a single well-defined
minimum. We can understand this by realizing that it is only when the value
of the trial coupling is correct that all of the details will match between the
HMBC and trial multiplet. On the other hand, if the HMBC multiplet is
rather featureless, the minimum in the χ2 map is less well defined and so the
resulting value of the coupling is less reliable.

[Fig. 12 about here.]

Occasionally, the χ2 plot does not show one well-defined minimum, such as
those seen in Figs. 4, 8 and 10. For example, fitting the C10–H12 cross peak
using method I gives the χ2 plot shown in Fig. 12. The global minimum is at
Jtrial ≈ 0.5 Hz, but there are subsidiary minima at 5.8 Hz and 10.5 Hz. Given
the intensity of the cross-peak, it is inconceivable that the coupling can be as
small as 0.5 Hz, so despite this corresponding to the global minimum, we are
forced to reject the value.

If the trial multiplets are inspected by eye it is found that for Jtrial = 0.5 Hz
there is quite close agreement with the HMBC multiplet, but that the fit does
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not appear to be so good when Jtrial = 5.8 Hz. A further check is provided
by comparing the C10–H12 cross peak with the C8–H12 cross peak. For the
latter, the fitting procedure straightforwardly gives a value of around 5.8 Hz
for the long-range coupling. However, this cross peak has little resemblance to
the C10–H12 cross peak; this casts doubt on the C10–H12 coupling being 5.8
Hz as indicated by the subsidiary minimum in the χ2 plot. The lesson to be
drawn from this discussion is that when multiple minima are present, caution
is needed in interpreting the results of the fitting procedure.

In general, our conclusions about these fitting procedures are that: (1) reason-
ably large values of the coupling constant determined by the fitting procedures
are reliable, but that small values need to be treated with caution; (2) it is
useful to fit a given cross peak using more than one method – the resulting
spread of values gives some indication of reliability; (3) the χ2 plot should be
checked for the presence of multiple minima as these may be an indication of
poor reliability.

Marquez et al. [16] have recently reviewed the large number of methods which
have been proposed for measuring long-range C–H couplings. Most of these
methods are based on HMQC- or HSQC-type correlation experiments which
have been modified to manipulate the way in which either or both the proton-
proton couplings and the long-range C–H coupling appear in the multiplets.
The general aim is to achieve a multiplet from which a splitting can be iden-
tified as the long-range C–H coupling. In this way, the need for any kind of
fitting procedure, such as that described here, is obviated. However, this is
achieved at the expense of more complex pulse sequences and possible com-
promises in the sensitivity of the experiment.

The procedure proposed in this paper relies on the use of a fitting procedure,
and so the data analysis is inherently more complex than simply measuring
a splitting from a multiplet. In addition, the fitting procedure requires extra
data, but we have shown that by utilizing the one-bond cross peaks this extra
data can be acquired at the same time as the HMBC spectrum. The pulse
sequences are not complex and involve no compromises. Thus, the approach
suggested here represents a straightforward and efficient way of measuring
values for long-range C-H couplings.
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Fig. 1. Pulse sequences for different variants of the basic HMBC experiment. Ra-
diofrequency pulses applied to proton and carbon are shown on the lines marked
1H and 13C, respectively; filled rectangles indicate 90◦ pulses, and open rectan-
gles indicate 180◦ pulses. Pulse field gradients are shown in the line marked G.
Sequence (a) is the conventional HMBC experiment, except that an extra proton
180◦ pulse is included at the end of t1; see text for details. Sequence (b) is a gra-
dient-selected HMBC experiment which has been designed specifically to produce
multiplets with the same phase properties as those from sequence (a). The delays δ
are included simply to accommodate the gradient pulses G1 and G2. Sequence (c)
shows how evolution of the C–H coupling can be affected by the placement of an
extra 13C 180◦ pulse at the start of the sequence; see text for details. Sequence (d) is
a new HMBC-type experiment which makes is possible to separate long-range from
one-bond correlations, and also results in more even intensities for the one-bond
cross peaks. As described in the text, several data sets are recorded with different
values of τf and then recombined to give the required spectra. In sequence (d) the
phases are as follows: φ1 = (x,−x) and φrx = (x,−x); all other pulses are phase x.
Sequence (e) is a one-dimensional (selective) version of the HMBC experiment; the
experiment is designed to give multiplets with identical phase properties to those
from sequences (a), (b) and (d). The selective element is a 180◦ pulse, duration tsel,
flanked by the two gradients.
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frequency domain time domain

trial multiplet
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multiply by Atrial sin(πJtrialt2)

2πJtrial 

HMBC multiplet

compare compare

⊗

proton multiplet

Fig. 2. The basic fitting procedure (method I), described in detail in the text, can be
envisaged in either the frequency domain (shown on the left) or time domain (shown
on the right). At the top is the conventional absorption-mode proton multiplet. The
first step is to introduce the phase modulation due to the preparation delay, ∆, in the
HMBC sequence; it is convenient to do this by left shifting the time-domain signal by
a number of data points corresponding to the delay ∆. Next, the anti-phase splitting
is introduced: in the frequency domain this is achieved by convoluting (represented
by ⊗) the proton multiplet with an “anti-phase stick multiplet” formed from two
delta-functions separated by 2πJtrial rad s−1; in the time domain the same effect
is achieved by multiplication by Atrial sin (πJtrialt2). These two steps generate a
trial multiplet which can then be compared with the multiplet from the HMBC
spectrum; the two parameters Atrial and Jtrial are adjusted in a least-squares fitting
procedure in order to obtain the best fit between the trial and HMBC multiplets.
In the diagram the trial multiplet has been constructed using the values of these
two parameters which give the best fit. Note that the time- and frequency-domain
signals are both complex, but that only the real parts are plotted here.
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Fig. 4. Experimental data showing application of the fitting procedure (method I)
to the strychnine C8–H13 cross-peak multiplet. The H13 multiplet shown in (a) was
excised from the conventional proton spectrum; the multiplet in (b) was excised from
a cross section, taken parallel to F2, of the HMBC spectrum, through the C8–H13
cross peak. Shown in (c) is the best-fit trial multiplet constructed as described in
the text; the agreement with (b) is excellent. Shown in (d) is a contour plot of χ2

(in arbitrary units), as defined in Eq. 5, as a function of the two parameters Atrial

and Jtrial. The minimum is clearly visible at Jtrial = 6.3 Hz.
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Fig. 5. Plot showing how the amplitude of one-bond and long-range cross peaks
varies with the preparation delay, ∆. The thick and thin solid lines shows how
the amplitude of one-bond cross peaks vary for couplings of 135 Hz and 125 Hz,
respectively. The grey line shows the slower variation which is characteristic of the
very much smaller long-range coupling (here 8 Hz). The significance of the times
labelled a, a′, . . . is explained in the text.
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Fig. 6. Part of the HMBC spectra of strychnine showing the clean separation of
long-range and one-bond cross peaks, and the more reliable intensities of the latter,
which can be obtained using the new method proposed here. Spectrum (a) is the sum
of the eight separate experiments, recorded using the pulse sequence of Fig. 1 (d)
and the values of τf given in Table 2; only long-range cross peaks are present. Spectra
(b) and (c) are the two combinations (of the eight experiments) which contain just
the one-bond cross peaks; the different intensities of particular cross peaks in the
two spectra are clearly visible. For each of the eight separate experiments, t1 was
incremented in 128 steps to a maximum value of 5.7 ms, and 8 transients were
recorded for each t1 value. The acquisition time was 0.8 s, and the recycle delay
between experiments was 2.5 s. The delays ∆, τ0, τ1 and τ2 were 51.2, 1.750, 3.073
and 3.928 ms, respectively; ∆0 was therefore 8.751 ms. The gradients G1 and G2

were of duration 1.95 ms, of Gaussian shape and truncated at the 1% level; their
amplitudes were set to −29.75% and 49.75% (of the full intensity of 40 G cm−1)
for the P -type and −49.75% and 29.75% for the N -type spectrum. The delay δ was
2 ms. Spectra were recorded at 500 MHz for proton, the total experiment time was
13 hours and the sample concentration was approximately 120 mM in CDCl3.
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Fig. 7. Illustration of a method, introduced by Sheng et al. [10], by which a one-bond
bond cross peak can be used to generate a trial multiplet; we term this approach
method II. First, a cross section containing the one-bond multiplet is taken from
the two-dimensional spectrum; note that the phase modulation due to the evolution
of proton shifts and couplings is already present. Then, one half of the multiplet
is excised (here the left-hand side) and shifted to the right by half the one-bond
coupling; this centres the multiplet at the proton offset. Finally, the shifted multiplet
is convoluted with an anti-phase stick multiplet (as in Fig. 2) so as to introduce the
trial anti-phase coupling.
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Fig. 8. Experimental data showing method II being used to determine the value of
the long-range C–H coupling from the C8–H13 cross-peak multiplet in strychnine.
In contrast to Fig. 4, rather than using a multiplet from the proton spectrum, half
of the one-bond cross peak is used to construct the trial multiplet. Spectrum (a)
shows the right-hand half of the one-bond cross peak (i.e. that between C13 and
H13) which has been excised from a cross-section through the modified HMBC
spectrum. Spectrum (b) shows the HMBC (long-range) multiplet which is to be
fitted, and (c) shows the best fit trial multiplet constructed from (a); the agreement
between (b) and (c) is excellent. Also shown is a plot of χ2 as a function of the two
parameters Atrial and Jtrial; to compute this plot 1Jtrial is set to 125 Hz and the trial
isotope shift, ε, is set to zero.
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Fig. 9. Illustration of fitting method III in which a one-bond cross peak is used
to generate a trial multiplet. On the left are shown the manipulations which are
applied to the whole one-bond cross peak. First the multiplet is excised from a
suitable cross-section from the two-dimensional spectrum. Then, the trial anti-phase
long-range coupling is introduced, as before, by convolution. On the right are shown
the manipulations which are applied to the long-range cross peak. The multiplet is
excised and then the one-bond coupling is introduced. The resulting multiplets at
the bottom on the left and the right can now be compared and the best-fit values
of Jtrial, 1Jtrial and Atrial found.
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Fig. 10. Experimental data showing fitting method III being used on the C8–H13
cross-peak multiplet from strychnine. In contrast to Fig. 8, rather than using one
side of the one-bond cross-peak multiplet, the whole multiplet is used. Spectrum
(a) shows the complete one-bond multiplet and spectrum (b) is the long-range mul-
tiplet into which the one-bond anti-phase coupling has been introduced. Spectrum
(c) shows the effect of introducing the anti-phase splitting due to the long-range
coupling into the multiplet shown in (a). At the optimum value of the long-range
coupling (used here to construct (c)), there is excellent agreement between (b) and
(c). Also shown is a plot of χ2 as a function of the two parameters Atrial and Jtrial;
to compute this plot 1Jtrial is set to 125 Hz and the trial isotope shift, ε, is set to
zero.
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Fig. 11. Cross-peak multiplets arising from long-range correlations to C12 in strych-
nine. Spectrum (a) was obtained using the one-dimensional pulse sequence of
Fig. 1 (e) whereas (b) was obtained from a two-dimensional HMBC experiment.
Note that, as required, the multiplets from the one-dimensional experiment are es-
sentially identical to those from the two-dimensional HMBC. The parameters for the
two-dimensional experiment are as in the caption to Fig. 6. For the one-dimensional
experiment 1024 transients were recorded using an acquisition time of 0.8 s and a
recycle delay between experiments of 1 s. The delays ∆ and δ were 55 and 2 ms,
respectively. The gradients G1 and G2 were of duration 1.95 ms, of Gaussian shape
and truncated at the 1% level; their amplitudes were set to 29.76% and 49.76% (of
the full intensity of 40 G cm−1). The selective 180◦ pulse was of duration 5 ms, of
Gaussian shape and truncated at the 1% level. The total experiment time was 31
minutes.
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Fig. 12. Contour plot of χ2 found when fitting the C10–H12 multiplet from strych-
nine using method I. Contours are plotted at evenly spaced intervals and are labelled
1, 2, . . . as the level rises. Three minima, indicated by •, are clearly visible; see text
for discussion.
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