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Abstract

We present a new method for recording broadband proton-decoupled proton spectra with ab-

sorption mode lineshapes and substantially correct integrals; in both of these respects, the new

method has significant advantages over conventional J-spectroscopy. In our approach, the de-

coupled spectrum is simply obtained from the 45◦ projection of the diagonal-peak multiplets

of an anti z-COSY spectrum. This method is straightforward to apply, and does not require

any unusual data processing. However, there is a significant reduction in sensitivity when com-

pared to a conventional proton spectrum. The method is demonstrated for typical medium-sized

molecules, and it is also shown how such a decoupled spectrum can be used to advantage in

measurements of diffusion constants (DOSY), the measurement of relaxation parameters, and

the analysis of complex mixtures.
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Introduction

In this paper we describe a new method for generating proton-decoupled proton spectra – that

is, proton spectra which contain a single line for each chemically distinct site, not split by the

effects of scalar couplings. Our method is distinguished by the fact that the decoupled spectra

have absorption mode lineshapes and retain the correct integrals, i.e. the integral is proportional

to the number of equivalent protons. Furthermore, the method is experimentally straightforward

and does not require any unusual data processing. We therefore believe that it offers a number

of significant advantages over the existing approaches for obtaining proton-decoupled proton

spectra.

The simplification resulting from the elimination of multiplet structures may be advanta-

geous in a number of areas, such as in the analysis of complex mixtures which arise from

studies of metabolism. Any quantitative measurements, such as the measurement of relaxation

rate constants and diffusion constants, will also benefit from the reduction in overlap which is a

feature of proton-decoupled proton spectra.

The new method utilizes a two-dimensional anti z-COSY spectrum.1 It will be shown that a

45◦ projection of the diagonal-peak multiplets of such a spectrum gives the required absorption-

mode decoupled spectrum. As the pulse sequence for z-COSY includes two small flip angle

pulses, there is a loss in sensitivity when compared to a simple proton spectrum. A further

problem is that the presence of strong coupling gives rise to unwanted peaks in the projection,

in an analogous way to those found in two-dimensional J-spectra.2–4

Outline of the method

The pulse sequences for the z-COSY and anti z-COSY experiments are shown in Figure 1.1

Both experiments give spectra which are closely related to the simple COSY spectrum,5, 6 with

cross-peak multiplets indicating the presence of scalar couplings, and a set of diagonal-peak

multiplets arranged along the 45◦ diagonal. In COSY, the mixing period is a simple 90◦ pulse,

but in z-COSY the mixing period is the element β–tz–β, where β is a small flip angle pulse,

and where only population terms are retained during the short delay tz. The use of this mixing

period gives rise to reduced cross- and diagonal-peak multiplets. In such multiplets, the only

peaks which are seen are those in which the spin states of any passive spins remain the same

during t1 and t2. This key idea is illustrated in Figure 2, which shows a typical diagonal- and

cross-peak multiplet for a three-spin system. Each line has been labelled with the spin states

of the passive spins, and we note that only those with the same spin states in t1/ω1 and t2/ω2
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Figure 1: Pulse sequences for: (a) z-COSY, (b) anti z-COSY, and (c) anti z-COSY with zero-
quantum suppression. All three sequences follow the same coherence transfer pathway (CTP),
which is shown at the bottom. The mixing period for z-COSY comprises a z-filter in which
both pulses have flip angle β, where β is small. The two mixing pulses for anti z-COSY have
flip angles of 180◦+β and β. The anti z-COSY sequence shown in (c) incorporates the swept-
frequency 180◦ pulse (indicated by the open rectangle with the diagonal stroke) and gradient
combination for the suppression of zero-quantum coherence present during tz. The second
gradient is a homospoil that is used to dephase all coherences with non-zero order. Note that
in this experiment, both mixing pulses have flip angle β. All pulses are of phase x and, unless
otherwise indicated, the filled rectangles represent 90◦ pulses.

are present. For the diagonal-peak multiplet, this means that all the peaks lie along the 45◦

diagonal.

In the case of anti z-COSY, the mixing sequence is (β+π)–tz–β. The addition of the 180◦

pulse at the beginning means that all the spin states are flipped, so this time the only peaks

which appear in the multiplet are those with opposite spin states in t1/ω1 and t2/ω2. As a result,

as shown in Figure 2 (c), the peaks in the diagonal-peak multiplet lie on a line which is perpen-

dicular to the main diagonal. If we project this diagonal-peak multiplet onto the main diagonal,

we obtain a single peak at the chemical shift; this is the basis of our method.

The beauty of this approach is that the diagonal peaks of the anti z-COSY spectrum are all in

absorption mode, so the projection is also in the absorption mode. Furthermore, as the number

of individual peaks in the diagonal-peak multiplet is the same as in the regular multiplet, the

integral of the peak in the projection is the same as for the corresponding multiplet, apart from

a simple scaling factor due to the mixing period which is common to all multiplets. As a result,

the projection will give reliable integrals – we can describe the projection as being quantitative.

In the past, z-COSY spectra have been bedevilled by phase distortions resulting from the

presence of zero-quantum coherence present during tz. However, it has recently been shown

3



ω1

ω2

Spin 2

Spin 3

α

α

α

β

β

α

β

β

ω2

2 3

α α

α β

β α

β β

Spin 1

Spin 3

α

α

α

β

β

α

β

β

(a) (c)(b)

ω2

Spin 2

Spin 3

α

α

α

β

β

α

β

β

Spin Spin

Figure 2: Schematic diagonal- and cross-peak multiplets expected in the z-COSY and anti z-
COSY spectra of a three-spin system. Shown in (a) is the cross-peak multiplet between spins
one and two in the z-COSY spectrum; the spin states of the passive spins are indicated in each
dimension. The diagonal-peak multiplet of spin one in the z-COSY spectrum is shown in (b).
The only peaks which are present are those in which the spin states of the passive spins are
the same in both dimensions. As a result, the peaks lie along the 45◦ diagonal. In contrast,
the only peaks that are observed in the diagonal-peak multiplet of the anti z-COSY spectrum,
which is shown in (c), are those in which the passive spins have the opposite spin state in
each dimension; the peaks therefore lie along a line that is perpendicular to the diagonal. It is
assumed that J12 > J13 = J23. Filled circles represent peaks of positive intensity, and unfilled
circles represent peaks of negative intensity.
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that these unwanted coherences can be suppressed effectively and conveniently using the com-

bination of a swept-frequency 180◦ pulse and a modest gradient.7, 8 Such a combination de-

phases the zero-quantum coherence in a way analogous to the dephasing of other coherences

by gradients. Figure 1 (c) shows the pulse sequence for anti z-COSY which incorporates this

zero-quantum dephasing method. Note that on account of the swept 180◦ pulse, the additional

180◦ pulse used in the mixing sequence of (b) is not needed in sequence (c).

There are a number of issues which need to be addressed if the projection method is to be

a practical approach. The first is that, as the projection is at 45◦, the linewidth in the projection

is an average of the linewidths in the ω1 and ω2 dimensions. It is therefore essential to acquire

the spectra with high resolution in the ω1 dimension, implying that t1 must extend to quite long

times. For a typical ω1 spectral width, this need for a large tmax
1 means that many increments

of t1 must be recorded. In cases where the sensitivity is high, this may lead to an unnecessarily

long minimum experiment time.

It would therefore be advantageous to reduce the number of t1 increments by reducing the

ω1 spectral width. Inevitably, this will lead to a folding in the ω1 dimension, but it will be shown

that such folding does not cause significant difficulties in obtaining the required projection.

The second point which needs to be addressed is the presence of cross-peak multiplets,

which are inevitably generated by the mixing period. These multiplets must not be included in

the projection as doing so will lead to unwanted anti-phase multiplets in the projection. If such

cross-peak multiplets lie well away from the main diagonal, then it is easy to exclude them from

the projection. It will be shown that if these peaks have been folded in ω1, as a result of using

a reduced spectral width in that dimension, they acquire symmetry properties which means

that they can be eliminated by a simple data processing method. However, if the cross-peak

multiplets lie close to the diagonal, and are not folded, it may be not possible to exclude them

from the projection. Of course, cross peaks which lie close to the diagonal are ones in which

the difference of the offsets of the two spins is becoming comparable to the scalar coupling,

which is exactly the condition for strong coupling. So, the contribution of these cross peaks

to the projection is analogous to the presence of ‘strong coupling artefacts’ in two-dimensional

J-spectra.2–4

Theoretical analysis

In this section we will analyze the various stages used to generate the required projection. It

is sufficient to use a three-spin system as the example, as this demonstrates all of the relevant
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properties. Since we are interested in multiplet structures it is convenient to use single-element

basis operators as they have a one-to-one correspondence with the lines in the spectrum.

Anti z-COSY

The initial state is chosen to be equilibrium magnetization on spin one. The 90◦ pulse gener-

ates in-phase magnetization along the −y-axis, −Î1y, which can be expressed in single-element

operators as

1
2 i
(
Î1+ Î2α Î3α + Î1+ Î2α Î3β + Î1+ Î2β Î3α + Î1+ Î2β Î3β

)
− 1

2 i
(
Î1− Î2α Î3α + Î1− Î2α Î3β + Î1− Î2β Î3α + Î1− Î2β Î3β

)
.

The terms containing Î1+ will produce the echo (N-type) spectrum, while those containing Î1−
will produce the anti-echo (P-type) spectrum.

Each of these terms evolves at its characteristic frequency during t1 to give:

1
2 iξ Î1± Î2α Î3α

1
2 iξ Î1± Î2α Î3β

1
2 iξ Î1± Î2β Î3α

1
2 iξ Î1± Î2β Î3β

Ĥfreet1−−−−−→

1
2 iξ Î1± Î2α Î3α exp [∓i (Ω1 + πJ12 + πJ13) t1]

1
2 iξ Î1± Î2α Î3β exp [∓i (Ω1 + πJ12 − πJ13) t1]

1
2 iξ Î1± Î2β Î3α exp [∓i (Ω1 − πJ12 + πJ13) t1]

1
2 iξ Î1± Î2β Î3β exp [∓i (Ω1 − πJ12 − πJ13) t1] ,

where ξ is equal to +1 for the echo and −1 for the anti-echo, and Ĥfree is the free-precession

Hamiltonian.

The first mixing pulse can be treated as two separate pulses of flip angles π and β that act

consecutively. The 180◦ pulse changes the sign of the coherence order and converts Îiα to Îiβ,

and vice versa. For example, the operators 1
2 iÎ1± Î2α Î3α are transformed as follows:

1
2 iξ Î1± Î2α Î3α exp [∓i (Ω1 + πJ12 + πJ13) t1]

πF̂x−−−−−→
1
2 iξ Î1∓ Î2β Î3β exp [∓i (Ω1 + πJ12 + πJ13) t1] ,

where F̂x = Î1x + Î2x + Î3x.

The rotation of single-element operators by radiofrequency pulses is described by the fol-
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lowing equations:

În±
βÎnx−−−−−→ În±c2 + În∓s2 ± 1

2 i
(
Înα − Înβ

)
S (1)

Înα
βÎnx−−−−−→ Înαc

2 + Înβs
2 + 1

2 i
(
În+ − În−

)
S (2)

Înβ
βÎnx−−−−−→ Înβc

2 + Înαs2 − 1
2 i
(
În+ − În−

)
S , (3)

where c = cos β2 , s = sin β2 , and S = sin β. If β is small, then s2, which is of the order O(β2),

tends to zero, and Equations 1, 2, and 3 can be approximated as:

În±
βÎnx−−−−−→ În±c2 ± 1

2 i
(
Înα − Înβ

)
S

Înα
βÎnx−−−−−→ Înαc

2 + 1
2 i
(
În+ − În−

)
S

Înβ
βÎnx−−−−−→ Înβc

2 − 1
2 i
(
În+ − În−

)
S .

Therefore, after the first β pulse a typical term such as 1
2 iξ Î1∓ Î2β Î3β becomes:

1
2 iξ
(
Î1∓c2 ∓ 1

2 i
(
Î1α − Î1β

)
S
) (

Î2βc2 − 1
2 i
(
Î2+ − Î2−

)
S
) (

Î3βc2 − 1
2 i
(
Î3+ − Î3−

)
S
)
.

Of the many terms here, only those representing populations are retained in the anti z-COSY

sequence; these are
1
4S c4

(
Î1α Î2β Î3β − Î1β Î2β Î3β

)
.

There are some other population terms which are of higher order in sin β; these can be neglected

as β is small.

The final β pulse produces the following observable terms, which all carry a t1 phase factor

of exp [∓i (Ω1 + πJ12 + πJ13) t1]:

−1
4 i S 2c8 Î1− Î2β Î3β diagonal peak on spin one,

1
8 i S 2c8 Î1α Î2− Î3β − 1

8 i S 2c8 Î1β Î2− Î3β cross peaks between spins one and two,
1
8 i S 2c8 Î1α Î2β Î3− − 1

8 i S 2c8 Î1β Î2β Î3− cross peaks between spins one and three.

The calculation can be repeated for the other terms to give the full multiplet structures of the

spin-one diagonal peak, and the associated cross peaks.
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Table 1: The positions and intensities of the three types of peak in the diagonal-peak multiplet
of spin one from the anti z-COSY spectrum of a three-spin system. S = sin β and c = cos(β/2).

Type Description Intensity

1 Counter-diagonal peak − 1
4 i S 2

(
c8 + 2c4s4 + s8

)
2 Off-diagonal peak − 1

2 i S 2
(
c6s2 + c2s6

)
3 On-diagonal peak −i S 2c4s4

Every peak in the N-type spectrum is matched by a peak in the P-type spectrum with the

same intensity, but with the opposite sense of modulation during t1. Therefore, the two ex-

periments can be combined to give a spectrum which has frequency discrimination in ω1 and

absorption mode lineshapes. Furthermore, both the cross peaks and diagonal peaks have the

same phase in both frequency dimensions, and so it is possible to phase the spectrum so that

both the cross peaks and the diagonal peaks have the double-absorption lineshape.

Diagonal-peak multiplet

We have seen from our analysis that, for the diagonal-peak terms, each operator product present

prior to t1 gives only one operator during t2. Therefore, the diagonal-peak multiplet will have

four lines of equal intensities, at unique frequencies in each dimension. The position of each

peak in ω2 is the same as that in ω1, except that all the coupling constant terms have opposite

sign. This is because the passive spins have the opposite spin polarization during t2 to the one

they have during t1, since there a high probability that the first mixing pulse (flip angle β+180◦)
will change the spin states of the passive spins, and the second mixing pulse (flip angle β) leaves

their polarization unaffected. These peaks all lie on the counter-diagonal, giving the multiplet

structure shown in Figure 2 (c).

This multiplet has a complete separation of the offset and the coupling: the frequency dimen-

sion that is parallel to the diagonal contains only the offset information, and the counter-diagonal

dimension contains only coupling information. Therefore, the projection of the multiplet onto

the diagonal is a decoupled spectrum. A more detailed calculation, which does not discard any

population terms, gives the set of intensities for the diagonal peaks shown in Table 1. There are

three types of peak, which are illustrated in Figure 3. Type 1 peaks lie on the counter-diagonal,

and are the ones we require. The peaks of type 3 lie on the diagonal and are due to magnetiza-
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Figure 3: Schematic of the spin-one diagonal-peak multiplet of a three-spin system showing
the three types of peak. The black circles represent the counter-diagonal peaks (type 1), the
grey circles represent the off-diagonal peaks (type 2), and the on-diagonal peaks (type 3) are
represented by the unfilled circles. The position of the main diagonal is given by the dashed
line.

tion terms in which the passive spins do not experience a net change of polarization during the

mixing period. Their intensity varies as sin2 β cos4(β/2) sin4(β/2), which is negligible for small

β, and so they do not need to be considered further. The peaks of type 2 are more intense, as the

leading term in the expression for their intensity varies as sin2 β cos6(β/2) sin2(β/2). Consider-

ing only the leading terms, the ratio of the intensity of these unwanted peaks to the intensity of

the wanted counter-diagonal peaks (type 1) is

type 2
type 1

=
2 sin2(β/2)
cos2(β/2)

= 2 tan2(β/2).

For a flip angle of β = 20◦, the off-diagonal peaks have a relative intensity of 0.062, or 16:1.

If β = 10◦, the relative intensity is 0.015, or 67:1. The peaks that do not lie on the counter-

diagonal will give rise to unwanted peaks in the projection. These unwanted components must

be minimized, which is done by reducing the value of β. However, the intensity of the wanted

peaks, which includes a factor of sin2 β, will also be reduced. Therefore, a compromise must be

made in which β is small enough to suppress the unwanted diagonal peaks, but large enough to

retain sufficient intensity in the counter-diagonal peaks. Typically, we use a flip angle between

10◦ and 20◦.
This analysis assumes that each population term that is present immediately after the first β

pulse will be unchanged at the end of tz. However, any longitudinal relaxation which occurs dur-
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ing this delay may cause the polarization of the spins to change. This leads to transformations

such as

Î1α Î2β Î3β −−−−−→ Î1α Î2β Î3α.

Spin three has therefore not experienced a net change in its spin state during the mixing period,

and so these relaxation processes lead to an increase in the intensity of the undesirable peaks

(here type 2). This effect can be minimized by keeping the delay tz as short as possible. In

practice, this means that tz is made just long enough for the required zero-quantum suppression.

Projecting the spectrum

As has been explained, the required decoupled spectrum is the projection of the anti z-COSY

spectrum onto the 45◦ diagonal. In this section we consider the details of how this projection

is calculated and what its properties are. There are two ways in which we could imagine cal-

culating this projection. The first is to rotate the two-dimensional spectrum such that the 45◦

diagonal is horizontal. Projecting onto this axis gives the required spectrum. The second ap-

proach is to shear the spectrum so as to align the multiplets in the correct way, and then compute

the projection.

In practice, the two methods are equivalent; however, it is conceptually easier to start with

the rotation, but computationally simpler to use the shear. We will therefore describe both

methods.

The projection of a two-dimensional spectrum S̃ (ω1, ω2) onto an axis u2 is calculated by

integrating over the perpendicular dimension u1. In the case we are interested in, u2 is the axis

which passes through the origin and is tilted at an angle φ to the ω1 axis, as is illustrated in

Figure 4 (b). Mathematically, the projection of a two-dimensional spectrum onto u2 is most

easily calculated by first rotating the spectrum through π/2− φ, so that u2 coincides with the ω2

axis. This rotation is described by the following frequency-coordinate transformation:

u1 = ω1 sinφ − ω2 cos φ, (4)

u2 = ω1 cos φ + ω2 sinφ. (5)

The projection onto the u2 axis is then given by:

P(u2) =
∫ ∞

−∞
S̃ (u1 sinφ + u2 cos φ,−u1 cosφ + u2 sinφ)du1.
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Figure 4: Illustration of the projection cross-section theorem. The time domain is shown in (a),
and the frequency domain in (b). According to the theorem, the Fourier transform of a cross-
section that passes through the origin and is inclined at an angle φ to the t1 axis is the same as
the frequency-domain projection onto the axis u2, which is inclined at the same angle to the ω1

axis.

A projection onto the main diagonal is achieved with φ = π/4:

u1 =
1√
2
ω1 − 1√

2
ω2, (6)

u2 =
1√
2
ω1 +

1√
2
ω2. (7)

Rather than rotating the spectrum, in practice it is usually easier to use the standard software

to shear the spectrum, so that the diagonal and counter-diagonal coincide with the ω2 and ω1

axes; we then project onto ω2. A shear operation applied parallel to the ω1 axis is illustrated in

Figure 5 for the case of a unit square data matrix. Each point is translated in the ω1-direction by

an amount Δω1 that is proportional to its ω2-coordinate. This can be expressed mathematically

as

Δω1 = αω2,

where the constant of proportionality α is referred to as the shear rate. The ω1 axis, which is

invariant under this transformation, is called the shear axis. It is also possible to define a shear

angle θ as

tan θ = α,

which is the angle through which a line that is perpendicular to the shear axis is tilted.

The shear transforms the square frequency space into a rhombus. One of the consequences

of this is that there are two regions of the spectrum (shaded grey in Figure 5 (b)) which are

shifted outside of the original square window. It is usual to translate (wrap) these regions back
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the square. They are translated back inside, as indicated by the arrows, to give the square data
matrix shown in (c).
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Figure 6: The effect of the required two shears on a simulated anti z-COSY spectrum of a three-
spin system. The main diagonal is indicated by a dashed line. Positive contours are coloured
blue, and negative contours are red. See text for details of the shear operations relating (b) to
(a), and (c) to (b).

inside the original window, as shown in Figure 5 (c). As a result, data points lying on a line

parallel to the shear axis undergo a cyclic rearrangement.

In order to transform the anti z-COSY spectrum in such a way that the projection onto

one axis gives the required proton-decoupled spectrum, two shears are needed. The process is

shown for a simulated spectrum of a three-spin system in Figure 6. The original spectrum (a) is

first sheared parallel to ω1, with a shear rate of α1 = −1; this gives spectrum (b). Such a shear
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transforms the frequency space (ω1, ω2) into a new coordinate system (ω′1, ω
′
2) as follows:

ω′1 = ω1 + α1ω2

= ω1 − ω2,

ω′2 = ω2.

In such a spectrum, what was the diagonal is now parallel toω′2, but the diagonal-peak multiplets

are still tilted with respect toω′1. The second shear is parallel toω′2, with a shear rate of α2 = +
1
2 ,

which gives a spectrum with the coordinate system (v1, v2):

v1 = ω
′
1

= ω1 − ω2, (8)

v2 = ω
′
2 + α2ω

′
1

= 1
2ω1 +

1
2ω2. (9)

This gives the spectrum shown in (c), in which the multiplets are parallel to v1, as required.

On comparing Equations 6 and 7 with Equations 8 and 9, it is seen that

v1 =
√

2 u1, (10)

v2 =
u2√

2
. (11)

Therefore, the two shears are equivalent to a 45◦ rotation of the spectrum followed by a scaling

operation, parallel to each of the two rotated axes, as indicated by Equations 10 and 11. The

scaling is entirely trivial as both the linewidth and the frequency axes are scaled in the same

way. The resolution is therefore the same.

The sheared spectrum has a complete separation of the offset and coupling information. The

projection of the diagonal peaks onto the v2 axis is a one-dimensional spectrum in which there

is just one line per chemical environment. This projection is calculated by selecting the region

of the spectrum which contains only the diagonal-peak multiplets, as shown by the grey box

in Figure 6 (c), and summing over the data points in the v1 dimension. The projected region is

shown in Figure 7 along with the decoupled spectrum. In addition, a cross-section that is taken

parallel to v1 at the position of the offset in v2 gives the structure of the associated multiplet.

These cross-sections at the offsets of the three spins are shown in Figure 8 (a)–(c).
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Figure 7: The region of the spectrum of Figure 6 (c) that is projected. The projection itself
is shown below, with the integrals of the three peaks. The values of T2 that were used are in
the ratio 2:1.33:1. The three arrows labelled (a)–(c) indicate the positions at which the vertical
cross-sections shown in Figure 8 are taken.
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Figure 8: The cross-sections of the doubly sheared anti z-COSY spectrum of the three-spin
system, taken at positions (a), (b), and (c) as shown in Figure 7. As the cross-sections are taken
parallel to v1, they give the structure of each multiplet.
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Lineshapes and signal-to-noise ratio
Linewidths

In this section, we will show that a peak in the projection has an absorption mode lineshape,

with a linewidth that is the average of the linewidths in the ω1 and ω2 dimensions.

A two-dimensional double-absorption Lorentzian that is centred on (ω1, ω2) = (Ω1,Ω2) is

represented by the following function

A(ω1, ω2) =
R1R2(

R2
1 + (ω1 −Ω1)2

) (
R2

2 + (ω2 − Ω2)2
) ,

where R1 = 1/T (1)
2 and R2 = 1/T (2)

2 ; T (1)
2 and T (2)

2 are the transverse relaxation time constants

during t1 and t2 respectively. The linewidth, conventionally taken to be the full-width at half-

maximum (FWHM) in the ωi dimension is 2Ri rad s−1.

After the rotation described by Equations 4 and 5, the lineshape function takes the form

A(u1, u2) =
R1R2(

R2
1 + (u1 sinφ + u2 cosφ − Ω1)2

) (
R2

2 + (−u1 cos φ + u2 sinφ −Ω2)2
) .

The lineshape in the projection is given by integrating this lineshape function over u1. The re-

quired projection can, however, be calculated more easily by using the projection cross-section

theorem,9 and is

P(u2) =
πR′

R′2 + (u2 −Ω′)2
,

where R′ = R1 |cos φ| + R2 |sinφ|, and Ω′ = Ω1 cosφ + Ω2 sinφ. The peak therefore has a

linewidth of 2R′ rad s−1, which is a weighted average of the ω1 and ω2 linewidths, and appears

at a position that is a weighted average of the offsets in the two dimensions. If φ = π/4, the

linewidth and position of the peak in the projection become:

2R′ = 2√
2

(R1 + R2) ,

Ω′ = 1√
2

(Ω1 + Ω2) .

In practice, instead of rotating the spectrum we shear it; this process results in a spectrum
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with the following double-absorption Lorentzian lineshape:

A(v1, v2) =
R1R2(

R2
1 +
(

1
2v1 + v2 −Ω1

)2) (
R2

2 +
(
−1

2 v1 + v2 −Ω2

)2) .

Integrating this with respect to v1 (i.e. projecting onto v2) gives the following lineshape:

P(v2) =
πRp

R2
p + (v2 −Ωp)2

,

where

Rp =
1
2 (R1 + R2) , (12)

Ωp =
1
2 (Ω1 + Ω2) . (13)

This offset and linewidth are the same as the corresponding values in the projection of the

spectrum that has been rotated by 45◦, except for a scaling factor of 1/
√

2. As we noted above,

the frequency axes are scaled in the same way, so the resolution is the same.

In the presence of significant inhomogeneous broadening, the lineshape becomes elongated

along the principal diagonal.10 However, the linewidth in the projection of the sheared spectrum

is still the average of the linewidths in the two dimensions, although the lineshape will reflect

the exact form of the inhomogeneity.

The data may be processed with weighting functions in either or both dimensions, although

if the correct integrals are to be retained these weighting functions must always decay from the

value at t1 = 0 or t2 = 0. Given that sampling may be limited in t1, it may be necessary to

apodize the data in this dimension in order to avoid truncation artefacts. However, the resulting

extra line broadening in the ω1 dimension is undesirable as it is transferred to the projection.

In this paper all of the experimental spectra have been processed without weighting functions

unless otherwise indicated.

Sensitivity

We will now compare the sensitivities of the proton-decoupled spectrum and a conventional

one-dimensional spectrum. This comparison is done by calculating the signal-to-noise ratio

of a singlet in each spectrum. Without loss of generality, we assume that the singlet is on

resonance.

In a conventional proton spectrum that is acquired with a single scan, the height of the peak
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is S , and the r.m.s. noise amplitude is σ, giving a signal-to-noise ratio of S/σ.

The anti z-COSY spectrum is recorded with N1 t1 increments. It is assumed that the

linewidths are the same in both ω1 and ω2, so that the shearing does not affect the signal-

to-noise ratio in the projection. We will therefore simply calculate the signal-to-noise ratio of

the singlet in the ω2 projection of the unsheared spectrum. The integral of a one-dimensional

spectrum over all frequencies is equal to the value of the first point in the time-domain. In an

entirely analogous way, the projection of a two-dimensional spectrum onto the ω2 axis is the

same as the Fourier transform of the first t1 increment. The signal-to-noise ratio in the pro-

jection is therefore equal to the signal-to-noise ratio of the first t1 increment‡. This is slightly

counter-intuitive as it implies that the remaining t1 increments are not important. However,

they are needed in order to map out the t1 evolution even though they do not contribute to the

intensity in the projection.

The signal-to-noise ratio in the projection is therefore given by:

SNR(projection) =
√

n
f S
σ
,

where n is the number of scans per increment, and f = 1
2 sin2 β is the intensity factor that arises

from the two small flip angle pulses.

A conventional proton experiment that has the same experiment time is acquired with nN1

scans, and so has the following signal-to-noise ratio:

SNR(1D) =
√

nN1
S
σ
.

The ratio of the two signal-to-noise ratios is therefore:

SNR(projection)
SNR(1D)

=
sin2 β

2
√

N1

. (14)

For example, if an anti z-COSY spectrum is recorded with 700 t1 increments, and β = 10◦,
the ratio in Equation 14 is equal to 5.7 × 10−4. Generating the proton-decoupled spectrum thus

incurs a heavy penalty in terms of the signal-to-noise ratio. The use of the two small flip angle

pulses is in large part responsible for this, along with a further reduction due to the large number

of t1 increments which have to be recorded.

To give a concrete example of what this implies, imagine a typical experiment in which we

‡This has been verified experimentally.

17



use 10◦ mixing pulses and record four transients, each taking 10 s, for each of 700 t1 increments;

this gives a total experiment time of just under 8 hours. For the projection of this spectrum

to have a signal-to-noise ratio of 50 would require the signal-to-noise ratio of a simple four

transient proton spectrum to be 3000. We will see in the next section that the ω1 spectral width

can be reduced significantly, and this reduces the number of t1 increments which are required,

easily by a factor of 10. In the example above, the two-dimensional spectrum needed to give

a projection with a signal-to-noise ratio of 50 could then be recorded in just under an hour.

Clearly, it is very advantageous to reduce the spectral width in this way.

Where sensitivity is at a premium, the flip angle of the mixing pulses can be increased.

For example, increasing them from 10◦ to 20◦ increases the signal-to-noise ratio by a factor of

almost 4.

Spectra with reduced ω1 spectral width

It was shown in the previous section that the linewidth in the projection is the average of the

linewidths in the ω1 and ω2 dimensions. This means that we must acquire a sufficient number of

t1 increments so that the linewidth is determined by relaxation and not by insufficient sampling.

If the ω1 spectral width is large, say 5000 Hz, then very many t1 increments must be recorded in

order to make sure that the ω1 linewidth is not limited by sampling. It is possible to reduce the

number of required increments simply by reducing the spectral width in ω1, but this will also

result in the peaks folding in this dimension. However, it will be shown in this section that, in

the sheared spectrum, the diagonal peaks will always be present in the same positions whether

or not they have folded. Thus, reducing the spectral width does not affect the calculation of the

projection. The cross peaks prove to be more problematic, and may fold into the region of the

spectrum we wish to project. However, it will be shown that on folding they acquire different

symmetry properties which allows them to be removed in a straightforward way.

As we noted above, reducing the number of increments has the effect of improving the

sensitivity of the projection relative to the conventional proton spectrum, according to Equation

14. It is thus very desirable to reduce the ω1 spectral width.

Diagonal peaks

When the ω1 spectral width is reduced, the diagonal folds into discrete sections, each of which

is tilted at 45◦ to both the ω1 and ω2 axes; the counter-diagonal peaks still lie on a line that is

perpendicular to each section of the diagonal. This is illustrated in Figure 9 (a). In this diagram,
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Figure 9: An illustration of the effect of shearing on the diagonal peaks of a folded spectrum.
The positions of the diagonal-peak multiplets in a folded spectrum are shown in the schematic
spectrum in (a). The boundaries of the spectral window are indicated by the widely-spaced
dashed lines. The true diagonal, represented by the closely-spaced dashed line, is folded into
a series of discrete sections, which are represented by solid lines. This spectrum is sheared
parallel to ω1, with a shear rate of −1, to give (b), transforming the rectangular spectrum into
a parallelogram. Any sections of the sheared spectrum that were shifted outside the original
spectral window are shaded grey. They wrap back inside, to give (c). The second shear is
parallel to ω2 with a shear rate of 1

2 , which gives the spectrum in (d).
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the central section of the diagonal has not folded, and is in its normal position. The two sections

immediately to the right and left have folded once, and the two outer sections have folded twice.

The first shear (parallel to ω1) gives the spectrum shown in (b). The central section of the

diagonal shears on to ω1 = 0 as usual, while the two sections that have folded once are sheared

onto the horizontal lines ω1 = ±ωSW,1, where ωSW,1 is the spectral width in ω1. The two sections

that have folded twice are sheared onto ω1 = ±2ωSW,1. In general, there will be two sections

that have folded n times (where n is an integer). One will be sheared onto ω1 = +nωSW,1, the

other will be sheared onto ω1 = −nωSW,1. In all cases, the counter-diagonal peaks are orientated

at 26.7◦ (tan−1 1
2) to the vertical.

The rectangular spectrum has been transformed into a parallelogram. As described above,

any sections of the sheared spectrum that lie outside the original spectral window are translated

back inside, to reproduce a rectangular spectrum. This process is referred to as wrapping, to

distinguish it from folding. A section of the diagonal that has been sheared onto ω1 = +nωSW,1

is translated by −nωSW,1 to ω1 = 0. Thus, after wrapping, the sheared spectrum is exactly the

same as the one we would obtain if the diagonal had not folded, as shown in (c). Therefore, it

does not matter whether or not the diagonal peaks fold, as they will always shear to the same

places. Finally, the second shear aligns the multiplets so that they are parallel to ω1, as shown

in (d).

Cross peaks

It can be seen from Figure 6 and Equation 13 that, for a spectrum that has been acquired with the

full spectral width in ω1, the ω2 frequency upon which the cross-peak multiplet between spins

i and j is centred in the sheared spectrum is given by the average of Ωi and Ω j. Furthermore,

cross peaks that are mirror images of each other about the diagonal in the original spectrum

are symmetrically related about ω1 = 0 in the sheared spectrum. This is demonstrated for the

simulated anti z-COSY spectrum of a two-spin system in Figure 10 (a); the original spectrum

and the spectra after the first and second shears are shown.

However, if as a result of reducing the spectral width the cross peaks wrap during the first

shear, they will no longer have the symmetry properties mentioned above. Figure 10 (b) shows

the original spectrum, and the spectra after each shear, that are obtained when the ω1 spectral

width is set to 88% of the full spectral width; the cross peaks have not folded during acquisition,

and are properly represented in the unsheared spectrum. The first shear shifts them outside of

the spectral window, and so they are wrapped back inside (compare Figure 5). As a result, the

second shear shifts them to positions that are not symmetrically related about ω1 = 0.

20



4.8 4.4 4.0 3.6 4.8 4.4 4.0 3.6 4.8 4.4 4.0 3.6 ppm

0

-200

Hz

200

0

-200

200

0

-100

100

0

-100

-100

100

0

100

(a)

(b)

(c)

(d)

(e)

Original spectrum After first shear After second shear

Figure 10: Simulated anti z-COSY spectra of a two-spin system, for different values of the
spectral width in ω1. The spectral width in the ω2 dimension is 850 Hz in all cases. The ω1

spectral width takes the following values: (a) 850 Hz, (b) 750 Hz, (c) 450 Hz, (d) 400 Hz, and
(e) 300 Hz. The diagonal is shown as a dashed line. Where they are clearly separated from the
diagonal peaks, the cross peaks have been coloured red.
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A similar situation arises for a spectral width which is set to 53% of the full spectral width

(Figure 10 (c)). The cross peaks are shifted further outside the spectral window by the first

shear, and are wrapped to positions that are closer to the diagonal peaks.

In Figure 10 (d), the spectral width in ω1 is 47% of the value in (a), which is sufficient for

the cross and diagonal peaks at the top of the spectrum to have folded to the bottom; they now

lie directly on top of the other peaks.

Setting the spectral width to 36% of the maximum value, as illustrated in Figure 10 (e),

causes all the peaks to fold once in the original spectrum. The diagonal peaks still shear to their

same positions, as we expect. The cross peaks are not shifted outside the window by the first

shear, but they still occupy unsymmetrical positions as they folded during the acquisition of the

original spectrum.

In general, a cross peak that is located at (ω1, ω2) = (Ω1,Ω2) will be unsymmetrically related

to its partner if the two peaks fold differently, either during acquisition or during the first shear.

The condition for this is:

|Ω1 − Ω2| > 1
2ωSW,1.

Symmetrization

Reducing the spectral width in the ω1 dimension has no effect on the diagonal-peak multiplets

in the sheared spectrum; they are still symmetrically distributed about ω1 = 0. The cross-peak

multiplets, if they have wrapped or folded as described above, are no longer symmetrically re-

lated to their partners. Therefore, they can be removed by applying the following symmetriza-

tion procedure to the sheared spectrum. The intensity at (ω1, ω2) is compared with the intensity

at (−ω1, ω2); the highest absolute value is replaced by the lowest absolute value, while retaining

the original sign.

If there is no accidental overlap between the individual cross- and diagonal-peak multiplets,

this simple symmetrization procedure removes all of the cross peaks which have wrapped or

folded differently from their partners, and leaves the diagonal peaks unaffected. The procedure

is remarkably effective at cleaning up the spectrum, as is shown in Figure 11.

Cross peaks which have not wrapped differently from their partners are symmetrically

placed about ω1 = 0, and so are not suppressed. Such cross peaks necessarily lie close to

the diagonal of the original anti z-COSY spectrum, and, as has been commented on before, are

analogous to the strong coupling artefacts seen in two-dimensional J-spectra.

If, as a result of the folding in ω1, an individual component of a cross-peak multiplet falls

on top of an individual component of a diagonal-peak multiplet, then the intensity of the latter
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Figure 11: Illustration of the shearing and symmetrizing processes on the simulated spectrum
of a three-spin system with reduced ω1 spectral width. The folded spectrum in (a) is sheared to
give the spectrum shown in (b). Symmetrization removes the cross peaks to give the spectrum
in (c), which is then projected onto ω2 to give (d). The integrals are given with the projection.

will be perturbed in a way which is not necessarily removed by the symmetrization process.

If the diagonal peak is reduced in intensity by the overlapping cross peak, the symmetrization

will transfer the perturbation in one component of the diagonal-peak multiplet to its symmetry-

related counterpart. If, on the other hand, the diagonal peak component is increased in intensity,

the symmetrization will restore its correct intensity.

The result of all this is that, even after symmetrization, the folding of the cross peaks into

the region occupied by the diagonal peaks can lead to intensity perturbations which will affect

both the projection and the multiplets. The former is seen in Figure 11, in the form of the

perturbation of the integrals of the projection.

If the linewidths in the two dimensions are the same, the symmetrization process affects

neither the lineshape nor the linewidth in the projection. However, if the ω1 linewidth is greater

than the ω2 linewidth, which may be the case due to restricted sampling in t1, the symmetriza-

tion process results in changes in the lineshape of the spectrum and its projection. Generally

speaking, the peaks in the projected spectrum have a linewidth at half-height which is close to

the ω2 linewidth. However, the base of the lineshape is characteristic of the broader line in the

ω1 dimension. Therefore, in practice there is little real improvement in resolution.

A useful side effect of the symmetrization process is an improvement of the signal-to-noise

ratio of the projection by approximately
√

2 when compared to the signal-to-noise ratio of the

projection of the unsymmetrized spectrum.
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Figure 12: The structure of camphor.

Experimental verification

In this section, the method for obtaining a proton-decoupled proton spectrum is illustrated ex-

perimentally with the spectra of camphor, whose structure is shown in Figure 12.

All of the spectra in this section were recorded at 500 MHz for protons on a Bruker Avance

DRX500 spectrometer.§ Both mixing pulses had the same flip angle of 10◦. Selection of the

CTP was achieved by a homospoil gradient during the z-filter (50% of the maximum intensity

of 59.5 G cm−1, 5 ms, half-sine shape). The swept pulse that was used to suppress the zero-

quantum artefacts was an adiabatic CHIRP 180◦ pulse with a radiofrequency field strength of

1.7 kHz, which was swept through an offset range of 24 kHz in 24 ms. The accompanying

gradient had a strength of 4% of the maximum. A two-step phase cycle in which the phases

of the first pulse and receiver were simultaneously changed by 180◦ was used to suppress the

axial peaks. The spectral width in ω2 is 1085 Hz, and the spectra were processed using the

States–Haberkorn–Ruben method.11 The acquisition time in t2 was 1.89 s.

The anti z-COSY spectrum of camphor with the full spectral width of 1085 Hz in ω1 is

shown in Figure 13 (a), and the region of the doubly sheared spectrum that is projected to

give the decoupled spectrum is shown in (b). The projection is shown in Figure 14 (b), with

the conventional proton spectrum in (a) for comparison. The multiplet structures of the first

seven camphor multiplets (starting at the largest chemical shift) obtained from the vertical cross-

sections taken at the offsets of the spins are shown in Figure 15 (a)–(g). The multiplets shown in

(f) and (g) are of particular interest as they overlap in the conventional proton spectrum, making

it impossible to distinguish their form. This overlap is completely removed in the sheared anti

z-COSY spectrum due to the separation of offset and coupling information, giving a clear view

of the multiplets.

The cross-peak multiplets between the diagonal-peak multiplets that are centred at 1.42 ppm

§The pulse sequences that were used to acquire the spectra, and the AU programs that were used for the shearing
and symmetrization operations are available on the WWW at http://www-keeler.ch.cam.ac.uk.
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Figure 13: The anti z-COSY spectrum of camphor is shown in (a). The spectrum is sheared, and
the central region, which is shown in (b), is the part projected to give the decoupled spectrum.
The region between 1.35 and 1.42 ppm contains a pair of cross-peak multiplets that lie very
close to the diagonal, so they are included in the projected region. There is also some t1 noise
visible at the chemical shifts of the three methyl groups (0.8 to 1.0 ppm). The spectral width in
ω1 is 1085 Hz; 760 t1 increments were recorded giving a maximum value of t1 of 0.7 s.
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Figure 14: The conventional proton spectrum of camphor is shown in (a). The projection of the
anti z-COSY spectrum from Figure 13 is shown in (b). For both spectra, the integrals of the
peaks are given relative to the resonance from the proton at 2.36 ppm. The peak at 1.66 ppm is
due to an impurity, and is marked with a 
. The two peaks at 1.35 ppm and 1.42 ppm are due
to spins that are strongly coupled to each other. The result is that the cross peaks lie very close
to the diagonal (see Figure 13) and project to give the set of anti-phase peaks between the two
singlet peaks at 1.35 ppm and 1.42 ppm.
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Figure 15: Cross sections taken from Figure 13 (b) giving the structures of the seven camphor
multiplets with the largest chemical shifts. The cross sections are taken at the following shifts:
(a) 2.36 ppm, (b) 2.10 ppm, (c) 1.96 ppm, (d) 1.85 ppm, (e) 1.69 ppm, (f) 1.42 ppm, and (g)
1.35 ppm.

and 1.35 ppm lie very close to the diagonal, and so have to be included in the region that is

projected. These cross peaks project to the anti-phase peaks between the two singlets visible in

Figure 14 (b). These extra peaks can be left out of the projection by summing over a smaller

range of frequencies in ω1. A series of ‘limited projections’ of the sheared camphor anti z-

COSY spectrum are shown in Figure 16 (a)–(c). Such an approach will, of course, produce

decoupled spectra in which the integrals are distorted as not all the diagonal peaks are included

in the projection. Nevertheless, these limited projections may be of interest as they avoid any

contributions from the cross peaks.

An anti z-COSY spectrum of camphor in which the ω1 spectral width has been reduced to

100 Hz is shown in Figure 17 (a), and the sheared spectrum is shown in (b). It can be seen that

the diagonal-peak multiplets have sheared to the same positions as in Figure 13 (b). However the

cross peaks have folded and so lie all over the spectrum. As was discussed above, the majority

of the cross peaks are not symmetrically displaced about ω1 = 0, and so can be removed by

applying a symmetrization procedure; this gives the spectrum shown in (c). The cross peaks

between 1.35 and 1.42 ppm lie close to the diagonal and so have not wrapped differently to their

partners in this spectrum. As a result, they are not removed by the symmetrization procedure.

Direct suppression of the cross peaks

Rather than relying solely on the symmetrization procedure for the elimination of the cross

peaks, it would be useful to have a pulse-sequence based method for suppressing them. We
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Figure 16: Successive limited projections of the region containing the diagonal-peak multiplets
in the sheared spectrum of camphor. Spectrum (a) is the single row at ω1 = 0 (dashed line). The
close-lying cross peaks do not contribute any intensity to this spectrum. However, some of the
diagonal peaks are not included either, as they also have zero intensity in this row. Widening the
range of the limited projection to 11 Hz (range indicated by the smaller square bracket on the
right hand side of the two-dimensional spectrum) includes more of the diagonal-peak intensity,
giving the spectrum in (b). Increasing the range to 33 Hz (range indicated by the larger square
bracket) gives a spectrum in which all the diagonal-peak multiplets contribute some intensity,
as shown in (c). However, part of the close-lying cross-peak multiplet is also included. The
peak labelled with the 
 is an impurity.
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Figure 17: The anti z-COSY spectrum of camphor with reduced ω1 spectral width. The spec-
trum is sheared to give (b), and after symmetrization gives spectrum (c). This spectrum is then
projected to give the decoupled spectrum in (d). The integrals are still in very good agreement
with those from the conventional spectrum, but there is some deviation for the integrals labelled
(i)–(iii); the peak labelled with the 
 is an impurity. The close-lying cross peaks between 1.35
and 1.42 ppm are still present in (c), as they are symmetrically distributed in the sheared spec-
trum, and so they contribute to the projection. The spectral width in ω1 is 100 Hz, and 70 t1

increments were recorded, giving a maximum value of t1 of 0.7 s.
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Figure 18: Anti z-COSY pulse sequences incorporating the multiple-scan cross-peak suppres-
sion scheme. The required CTPs are also included. The sequence shown in (a) gives the N-type
spectrum, and the sequence shown in (b) gives the P-type spectrum. The open rectangle in
(b) represents a hard 180◦ pulse. Sequence (c) also gives the P-type spectrum, but has been
modified to include a pair of composite pulses (the two open rectangles with diagonal strokes
flanking the second delay δ).

term this ‘direct’ suppression of the cross peaks.

Suppressing the cross peaks in an anti z-COSY experiment is essentially the same problem

as the suppression of zero-quantum coherence during a z-filter,7, 8, 12 or the removal of strong

coupling artefacts from a J-spectrum.13 In both cases, the wanted and the unwanted magneti-

zation terms follow the same CTP, and so cannot be separated by conventional phase-cycling

or gradient selection methods. However, there is a crucial difference between cross-peak and

diagonal-peak terms that allows the former to be suppressed. This is that the cross peaks are

produced by coherence that is transferred from one spin to another during the mixing period:

the magnetization therefore evolves at a different offset either side of the z-filter. In contrast, the

diagonal peak terms evolve at the same offset throughout the pulse sequence.

Figure 18 shows modified anti z-COSY pulse sequences which exploit this difference be-

tween the fate of magnetization leading to cross and diagonal peaks in order to suppress the

former. A delay δ is inserted either side of the mixing period, and a CTP is selected such that

the coherence order is of opposite sign during the two delays. As a result, for a diagonal peak
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the phase acquired during the first delay δ is equal and opposite to that acquired during the

second delay δ. Thus, diagonal peaks acquire no phase due to the two delays. In contrast, mag-

netization giving rise to a cross peak between spins i and j will acquire a phase −Ωiδ during

the first delay, and Ω jδ during the second delay. Thus, cross peaks acquire an overall phase

of
(
Ω j −Ωi

)
δ, and so can be suppressed by the co-addition of spectra recorded with different

values of δ.

In order that the magnetization which gives rise to the diagonal peaks acquires no phase as a

function of δ, the coherence must be ±1 during the first delay, and ∓1 during the second delay.

Thus, the resulting spectrum will have phase-twist lineshapes. In order to recover absorption

mode spectra, P- and N-type spectra must be recorded and combined in the usual way. The

two variants of the pulse sequence needed to record the N- and P-type spectra are shown in

Figure 18 (a) and (b) respectively. Note the inclusion of an extra 180◦ pulse in (b) just prior to

acquisition.

Analysis of the pulse sequences

In this section we will analyze the modified pulse sequences of Figure 18; it is sufficient to con-

fine the discussion to a two spin system, as this illustrates all the relevant features of this method

for suppressing the cross peaks. Starting with equilibrium magnetization on spin one, the 90◦

pulse generates Î1y =
1
2 i
(
Î1+ − Î1−

) (
Î2α + Î2β

)
, which represents equal amounts of coherence of

order +1 and −1. The operator Î1+ ultimately produces the N-type spectrum, whereas Î1− gives

the P-type spectrum. For simplicity, we will calculate the evolution of the single operator Î1+ Î2α

during the N-type pulse sequence (a), and then do the same for the complementary operator

−Î1− Î2α during the P-type pulse sequence (b).

If we assume that the delay δ is short enough for J-modulation to be insignificant

(δ 	 1/ |J12|), the operator Î1+ Î2α evolves to give the following term just prior to the mixing

period:

Î1+ Î2α exp [−i (Ω1 + πJ12) t1] exp [−iΩ1δ] .

The population terms generated by the first β pulse are:

1
2 i sin β cos2 1

2β
(
Î1α Î2α − Î1β Î2α

)
exp [−i (Ω1 + πJ12) t1] exp [−iΩ1δ] ,

where, as before, it has been assumed that β is small. The swept 180◦ pulse interconverts Îiα
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and Îiβ to give:

1
2 i sin β cos2 1

2β
(
Î1β Î2β − Î1α Î2β

)
exp [−i (Ω1 + πJ12) t1] exp [−iΩ1δ] .

The second β pulse then produces the following observable terms of coherence order −1:

−1
4 sin2 β cos4 1

2β
(
2Î1− Î2β + Î1β Î2− − Î1α Î2−

)
exp [−i (Ω1 + πJ12) t1] exp [−iΩ1δ] ;

this term comprises one diagonal peak and two cross peaks. Finally, evolution during the second

δ delay gives:

−1
2 sin2 β cos4 1

2β exp [−i (Ω1 + πJ12) t1] Î1− Î2β diagonal peak,

−1
4 sin2 β cos4 1

2β exp [i (Ω2 −Ω1) δ] exp [−i (Ω1 + πJ12) t1] Î1β Î2− cross peak,

+1
4 sin2 β cos4 1

2β exp [i (Ω2 − Ω1) δ] exp [−i (Ω1 + πJ12) t1] Î1α Î2− cross peak.

Note that the cross peaks acquire a phase that is dependent on δ, whereas the diagonal peak

does not.

In the P-type experiment, the operator −Î1− Î2α produces the following observable terms:

−1
2 sin2 β cos4 1

2β exp [i (Ω1 + πJ12) t1] Î1− Î2β diagonal peak,

−1
4 sin2 β cos4 1

2β exp [−i (Ω2 − Ω1) δ] exp [i (Ω1 + πJ12) t1] Î1β Î2− cross peak,

+1
4 sin2 β cos4 1

2β exp [−i (Ω2 − Ω1) δ] exp [i (Ω1 + πJ12) t1] Î1α Î2− cross peak.

Again, it is only the cross peak terms which have acquired a phase which depends on δ.

If two experiments are acquired, the first with δ = 0 and the second with δ = π/ |Ω1 − Ω2|,
the cross peaks will have different signs in each experiment, whereas the diagonal peaks will

be unaltered. Adding the two experiments will therefore eliminate the cross peaks. If there are

several cross-peak multiplets that need to be suppressed, the experiment is repeated a number

of times (typically eight) with a systematic variation of δ.12 The sum of the resulting data will

produce a spectrum with a net attenuation of the intensities of the cross peaks.

The above analysis is only valid if the evolution of coupling during δ can be ignored, i.e. δ

is small. Such small values can be used to suppress cross peaks that lie far from the diagonal in

the unfolded spectrum. However, cross peaks that lie closer to the diagonal, and are therefore

associated with smaller values of |Ω1 −Ω2|, can only be suppressed with larger values of the
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delay. In most practical cases, δ is likely to extend to values such that we must take into account

the evolution of the coupling. The effect of this evolution on the diagonal peaks will now be

calculated.

In the N-type experiment, the operator Î1+ Î2α evolves during the first delay δ to give:

Î1+ Î2α
Ĥfreeδ−−−−−→ Î1+ Î2α exp [−i (Ω1 + πJ12) δ] .

The z-filter comprises two small flip angle pulses and a swept 180◦ pulse, so its overall effect

is to change the polarization of the passive spin; appropriate coherence selection is also used to

ensure that the coherence order is changed to −1. The resulting diagonal-peak term is therefore

−1
2 sin2 β cos4 1

2β exp [−i (Ω1 + πJ12) δ] Î1− Î2β.

This term evolves during the second delay δ to give:

− 1
2 sin2 β cos4 1

2β exp [−i (Ω1 + πJ12) δ] exp [i (Ω1 − πJ12) δ] Î1− Î2β

= − 1
2 sin2 β cos4 1

2β exp [−2iπJ12δ] Î1− Î2β.

We see that the combination of the delays and the z-filter results in a refocusing of the offset,

but the coupling evolves for 2δ. Therefore, in the N-type spectrum, the diagonal peaks acquire

a phase error due to the J-modulation during the two delays δ.

The complementary operator in the P-type experiment, −Î1− Î2α, evolves during the first

delay δ to give:

−Î1− Î2α exp [i (Ω1 + πJ12) δ] .

The z-filter now comprises two small flip angle pulses and two 180◦ pulses (the first mixing

pulse has flip angle 180◦+ β). Each 180◦ pulse changes the polarization of the passive spin, and

so together they have no net effect. Therefore, the z-filter does not change the polarization of the

passive spin. The coherence order does change sign, however, giving the following diagonal-

peak term just after the mixing period:

−1
2 sin2 β cos4 1

2β exp [i (Ω1 + πJ12) δ] Î1+ Î2α.
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This term evolves during the final delay δ to give:

− 1
2 sin2 β cos4 1

2β exp [i (Ω1 + πJ12) δ] exp [−i (Ω1 + πJ12) δ] Î1+ Î2α

= − 1
2 sin2 β cos4 1

2β Î1+ Î2α.

The sequence of the delays and the z-filter refocuses both the offset and the scalar coupling; as a

result, the diagonal peak terms in the P-type experiment are completely unaffected by the value

of the delay δ.14

This J-modulation of the N-type, but not of the P-type, spectrum is a problem as it results in a

phase distortion when the two spectra are combined, i.e. the spectrum, and hence the projection,

will not be in the absorption mode. We conclude, therefore, that the method cannot be used to

suppress cross peaks that lie close to the diagonal, as the values of δ that would be required

would result in significant phase distortions.

A further problem will arise when δ is long enough that transverse relaxation is significant.

There will be reductions in intensity by a factor of exp [−2δ/T2], which is dependent upon

the transverse relaxation time constant T2. The peak heights will therefore gain a relaxation

weighting, which will distort the integrals of the projection.

Experimental results

The method for the direct suppression of the cross peaks is illustrated with the spectra of cam-

phor. Eight equally-spaced values of the delay δ between 0 and 10 ms were used to suppress the

cross peaks: the minimum offset difference that can be suppressed with this choice of delays is

87.5 Hz. A four-step phase cycle was used in which the phase of the first mixing pulse took the

values [x, y,−x,−y] in the N-type experiment, and [x,−y,−x, y] in the P-type experiment: the

receiver phase was [x, y,−x,−y] in both experiments, thus selecting Δp = −1 in the former, and

+1 in the latter.

Rather than using a single hard 180◦ pulse at the end of the P-type sequence, it is recom-

mended that a pair of composite pulses, which have a greater tolerance of radiofrequency field

inhomogeneity, are used, as shown in Figure 18 (c). The spectra presented in this section were

recorded using this sequence in which the composite broadband inversion pulses (BIPs) were

those described by Smith et al.15 It is necessary to use two such pulses so that the phase errors

produced by the first are cancelled by the second. Both BIPs had a pulse length of 100 μs, and a

B1 field of 20 kHz. All other acquisition parameters are the same as those given for the spectra

in Figures 13 and 17.
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Figure 19 shows the anti z-COSY spectrum that was acquired with the full spectral width

in ω1. There is a significant reduction in the intensity of the cross peaks, although those lying

close to the diagonal between 1.35 and 1.42 ppm are only partially suppressed on account of

the small difference in the offsets of the coupled spins.

Since the suppression requires recording spectra with multiple values of δ, a large minimum

experiment time is needed, limiting the resolution that can be obtained in ω1. As before, this

problem can be solved by reducing the spectral width in this dimension. The resulting spectrum

is shown in Figure 20 (a), which also shows an excellent degree of cross-peak suppression.

The sheared spectrum is shown in (b), and this is projected to give the decoupled spectrum in

(c). There is some deviation in the values of the integrals, which is attributed to transverse

relaxation during the delays δ. It can also be seen that the residual cross-peak intensity leads

to some small distortions visible near the bases of the peaks. This unwanted intensity can be

removed by symmetrizing the spectrum in (b), and then projecting to give the cleaner spectrum

in (d).

It was pointed out before that if there is any overlap between a component of a cross-peak

multiplet and a component of a diagonal-peak multiplet, there may be a distortion in the inten-

sity of the latter on symmetrizing the spectrum. This effect is, of course, reduced when the cross

peaks have been suppressed directly.

Applications

There are a number of experiments in which it would be advantageous to have access to a

proton-decoupled proton spectrum. Three such applications are presented in this section.

Diffusion measurements

Diffusion-order spectroscopy (DOSY) is used to separate the components of a mixture which

have different diffusion constants.16 A basic pulse sequence for a diffusion-weighted anti z-

COSY experiment is shown in Figure 21 (a). A stimulated echo is inserted before t1, which

includes two diffusion gradients of duration δ and strength G, and which are separated by a

delay Δ. The diffusion-dependent signal attenuation is given by the well-known formula:17

S = S 0 exp
[
−Dγ2s2G2δ2Δr

]
, (15)

where S is the intensity of the attenuated signal, S 0 is the signal intensity in the absence of

diffusion, D is the diffusion constant, γ is the gyromagnetic ratio of the nucleus, s is a shape
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Figure 19: The anti z-COSY spectrum of camphor recorded using the pulse sequences of Figure
18 which are modified for the suppression of the cross peaks using variable delays. The delay
δ took eight equally-spaced values between 0 and 10 ms. All the cross peaks that lie well away
from the diagonal have been suppressed significantly. The close-lying cross peaks between
1.35 and 1.42 ppm are, however, still present. The spectral width in ω1 is 1085 Hz, and 70 t1

increments were recorded giving a maximum value of t1 of 64 ms. Gaussian multiplication was
used in the indirect dimension. The total experiment time was 16 hours.
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Figure 20: The anti z-COSY spectrum of camphor recorded with reduced ω1 spectral width and
the variable delay cross-peak suppression scheme of Figure 18. The folded spectrum is shown
in (a). This is sheared to give the spectrum in (b), which is then projected to give the decoupled
spectrum in (c). The integrals are given relative to the peak on the far left. There is some
deviation from the values in the conventional spectrum due to differential transverse relaxation
during the variable delays. Some residual cross-peak intensity is present, which is removed by
symmetrization of the sheared spectrum in (b). The projection of this symmetrized spectrum
is shown in (d). The impurity peak in each decoupled spectrum is labelled with a 
: it is in a
different position to that in Figure 14. The spectral width in ω1 is 100 Hz, and 70 t1 increments
were recorded, giving a maximum value of t1 of 0.7 s. The values of the delay δ and the total
experiment time are the same as for the spectrum in Figure 19.
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Figure 21: Anti z-COSY pulse sequences and CTPs that have been modified for diffusion and
T1 relaxation measurements. The sequence shown in (a) produces an anti z-COSY spectrum
in which the peaks have diffusion-weighted intensities. The two CTPs give the N-type and P-
type spectra respectively. The sequence in (b) produces a spectrum in which the intensities are
weighted by the degree of T1 relaxation during the delay τ. The first pulse with the diagonal
stroke in (b) is a BIP.15 In both experiments, all the pulses are of phase x, and the axial peaks
are suppressed by phase-cycling the pulses labelled φ and the receiver according to [x, −x].
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Figure 22: The structures of the three components of the mixture. Camphene is shown in (a),
geraniol is shown in (b), and quinine is shown in (c).

factor which compensates for non-rectangular gradient shapes, and Δr is a reduced delay time.

A series of anti z-COSY spectra are recorded for a range of values of G. Each spectrum is

then sheared, symmetrized, and projected in the usual way to give a set of decoupled spectra

that are diffusion-weighted. The intensities of the peaks are measured and fitted to Equation 15

to determine the diffusion constant D.

This method is illustrated with a mixture of 15 mg of quinine, 11 mg of geraniol, and 13 mg

of camphene in 1 ml of MeOD. The structures of the three molecules are shown in Figure 22.

The sample temperature was 300 K, and the heating gas flow rate was 400 l hour−1. Eight

diffusion-weighted spectra were acquired, with equally-spaced gradient strengths between 10%

and 50% of the maximum. The diffusion gradient duration δ and inter-gradient delay Δ were

2 and 150 ms respectively. Coherence order zero was selected during the first z-filter with a

homospoil (37%, 2 ms). All gradient pulses were shaped to a half-sine bell. The phase cycle

comprised two steps in which the phases of the third 90◦ pulse and receiver were simultaneously

changed by 180◦. The spectral widths in ω1 and ω2 are 4496 and 100 Hz respectively. The

acquisition time in t2 was 1.82 s; 70 t1 increments were recorded, giving a maximum value of t1

of 0.7 s. The effects of convection were reduced by spinning the sample about the z-axis.18

The conventional proton spectrum is shown in Figure 23 (a), with the projection of the

sheared anti z-COSY spectrum in (b). There is a good separation of the peaks above about

2 ppm in the former, but in the range 1 to 2 ppm, the spectrum is more crowded. It is in this

region that we expect to see significant advantages from analyzing the decoupled, rather than

the regular, spectra.

Figure 24 shows expansions of this crowded region of the spectra; the improved separation

offered by the decoupled spectrum is evident. Shown in (c) is the DOSY spectrum computed

from a series of diffusion-weighted decoupled spectra. The diffusion coefficient for each peak

in the spectrum was determined, and then this value was represented in the two-dimensional
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Figure 23: The decoupled spectrum of the mixture of quinine, geraniol, and camphene in
MeOD. The conventional proton spectrum is shown in (a), and the projection of the sheared
anti z-COSY spectrum is shown in (b). Any multiplet structures in the latter that are due to
close-lying cross-peak multiplets are labelled with a 
.
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Figure 24: Illustration of the use of decoupled proton spectra to generate a two-dimensional
DOSY spectrum of a crowded region from the spectrum of a mixture of quinine, geraniol, and
camphene in MeOD. The conventional proton spectrum is shown in (a), and shows several
overlapping multiplets. The decoupled spectrum, which shows considerable simplification, is
shown in (b). There are three sets of peaks which correspond to the projection of close-lying
cross peaks; these are indicated by a 
. The two-dimensional decoupled DOSY spectrum is
shown in (c). The average values of the diffusion coefficient for the three components, deter-
mined from well-resolved resonances, are indicated by the dashed lines. The values for quinine,
geraniol, and camphene are 8.1, 11.6, and 15.6 × 10−6 cm2 s−1 respectively.
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DOSY spectrum by a Gaussian line whose width is proportional to the standard error of the fit.

From other well-resolved peaks in the spectrum it is possible to determine the average dif-

fusion coefficients of the three components. These values are indicated by the dashed lines. We

see that even in this crowded region, there is a clear separation of the majority of the peaks

according to their diffusion coefficient.

Longitudinal relaxation measurements

Figure 21 (b) shows an anti z-COSY pulse sequence that has been modified to give a T1 relax-

ation weighting to the intensities of the peaks in the two-dimensional spectrum. The equilibrium

magnetization is inverted by a BIP, and is allowed to relax during the subsequent delay τ. The

signal intensity is given by:

S = S 0
(
1 − 2 exp [−τ/T1]

)
, (16)

where S 0 is the intensity arising from a simple 90◦ pulse.

The procedure for determining the values of T1 using the pulse sequence in (b) is analogous

to determining a diffusion constant: a series of spectra is recorded with a systematic variation

of τ; these are then sheared, symmetrized, and projected, and the peak intensities are fitted to

Equation 16.

The experimental data that were collected confirm that the relaxation-weighted decoupled

spectra that are thus generated can be used to accurately determine the values of T1 for each

proton.

Analysis of a complex mixture

A further application of this method of recording a decoupled spectrum is in the analysis of

complex mixtures, such as those which arise from the study of metabolism.19 We demonstrate

this with the spectra of a sample of a KG1a (AML cancer model) cell extract kindly supplied by

Dr Ulrich Günther at the University of Birmingham. The anti z-COSY spectrum with reduced

ω1 spectral width of this sample (in D2O) was recorded, with presaturation of the residual water

signal. As sensitivity was at a premium, the flip angle of the mixing pulses was set to 20◦;
the data were acquired with 80 scans per increment using a cryo probe. The spectral widths in

ω1 and ω2 are 100 Hz and 5000 Hz respectively; the acquisition time in t2 was 0.8 s, and the

number of increments in the indirect dimension was 40, giving a maximum value of t1 of 0.4 s.

The spectrum was processed with a decaying exponential weighting function with 1.3 Hz of

line broadening in both dimensions.

The conventional proton spectrum of the sample is shown in Figure 25 (a), and the projection
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Figure 25: Broadband proton-decoupled proton spectrum of a sample of the cancer model cell
extract in D2O. The conventional proton spectrum, recorded with presaturation of the water
signal, is shown in (a). The decoupled spectrum is shown in (b). In both spectra, the residual
water signal can be seen on-resonance, and is labelled with a 
.

of the sheared and symmetrized anti z-COSY spectrum is shown in (b). The region between 0.5

and 4.4 ppm is very crowded, and so the analysis of this region benefits significantly from

the simplification obtained by decoupling. Expanded regions of both the conventional and

decoupled spectra are shown in Figure 26 (a) and (b).

Discussion

The new method described in this paper is capable of yielding proton-decoupled proton spectra

with absorption mode lineshapes and substantially correct integrals. The price that has to be

paid for this decoupled spectrum is a considerable reduction in sensitivity when compared to
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Figure 26: The crowded region of the spectra shown in Figure 25. The conventional spectrum
is shown in (a), and the decoupled spectrum is shown in (b).
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a conventional proton spectrum, the need to record and process a complete two-dimensional

spectrum, and certain difficulties associated with the need to suppress the cross peaks in the

underlying two-dimensional spectrum. In addition, the presence of strong coupling leads to

additional peaks in the decoupled spectrum – a feature which is not unique to our method.

There are a number of other ways of recording proton-decoupled proton spectra, and so it is

useful at this point to compare these with the proposed new method.

Historically, the first method for recording such decoupled spectra was the use of a 45◦

projection of a two-dimensional J-spectrum.20 The problem with this approach is that the two-

dimensional spectrum has a phase-twist lineshape, the 45◦ projection of which is identically

zero.9 It is therefore necessary to project the absolute value spectrum, but unfortunately this

gives an exceptionally broad lineshape, due to the dispersion mode contributions. These con-

tributions can be eliminated by using strong weighting functions (in t1 and t2) to create sym-

metrical time-domain envelopes: this is the pseudo-echo method.21 However, the draw-back

with such an approach is that the integrals of the peaks in the projection are very distorted,

with broad peaks losing a great deal of intensity, to the point at which they may well disappear.

In addition, even for sharp lines, there is a significant loss in intensity, as shaping the time-

domain signals to a symmetric envelope eliminates that part of the signal where the intensity

is greatest. Use of pseudo-echo weighting is certainly a practical way of obtaining a useable

proton-decoupled proton spectrum, although it must be recognized that the intensity distortions

are very significant.

Considerable effort has been put into finding alternative ways of processing two-dimensional

J-spectra in such a way that the phase-twist lineshape is avoided. Such approaches typically

involve replacing the phase-twists in the spectrum with a more favourable lineshape that has the

same frequency and linewidth parameters, or non-linear processing of the time-domain data.22, 23

Examples of the latter include linear prediction,24 maximum entropy,25 or FDM.26 At their

best, these methods show promise, but they still suffer from distortions in the intensities of the

projection – in particular, broad signals tend to be discriminated against quite strongly. These

non-linear methods have failed to gain wide acceptance, probably reflecting more the difficulties

of implementing ‘non-standard’ data processing than on any inherent defects with the approach.

There are three related methods that produce J-spectra in which the multiplets, rather than

being aligned along the 45◦ diagonal, have structures with rotational symmetry patterns. For

the first method, the J-spectrum is superimposed on its refection in the ω1 = 0 axis, creating a

multiplet pattern in the form of a St Andrew’s cross.27 For the other two techniques, the pulse-

sequence is modified to purge the anti-phase product operator terms present at the end of t1.
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This is done by using either the inhomogeneity of the radiofrequency magnetic field orientated

at the magic angle,28, 29 or a z-filter.30 In all three cases, the resulting spectrum is processed with

software which recognizes the symmetry patterns, thus constructing the decoupled spectrum.

Another approach to obtaining proton-decoupled proton spectra is to use the constant time

method.31, 32 Here, a two-dimensional experiment is arranged so that scalar couplings evolve

for a fixed time, whereas offsets evolve for the incrementable time t1. As a result, the ω1 dimen-

sion contains the required proton-decoupled proton spectrum, which can be in the absorption

mode. The difficulty with this approach is that the intensities are modulated by the evolution

of the scalar coupling during the fixed time, and are also weighted by relaxation during this

time. Overall, therefore, in a system of any complexity the intensities are highly variable. A

significant draw-back of the constant time approach is that the decoupled spectrum appears in

the ω1 dimension, so obtaining high resolution can be time-consuming. It should be noted,

however, that in biomolecular NMR the constant time approach is used to great effect, but the

difference in such experiments is that the spin systems are well-defined, and do not vary greatly

from sample to sample, so that the constant time can be optimized in a straightforward way.

The method recently described by Zangger and Sterk33 is of considerable interest. They use

a selective refocusing pulse in the presence of a weak gradient which results, in effect, in all of

the passive spins being flipped during a spin echo. As a result only the shift evolves during the

echo, leading to a proton-decoupled proton spectrum. The required spectrum is not recorded

in real time, but appears in the indirect dimension of a two-dimensional spectrum. However, it

is possible to record the spectrum as an interferogram, sidestepping the need for recording or

computing the complete two-dimensional matrix. The Zangger–Sterk method gives absorption

mode lineshapes and substantially correct integrals. Like our method, there is a considerable

reduction in sensitivity on account of the use of the selective pulse (we estimate that the two

methods have comparable sensitivities). Recently, Nilsson and Morris have shown that the

Zangger–Sterk method can be combined with diffusion weighting to give proton-decoupled

DOSY spectra similar to those in Figure 24.34

As has been pointed out,35 our method and the Zangger–Sterk approach have an interesting

similarity in that both achieve decoupling by manipulating the passive spins. The Zangger–

Sterk method does this by using a selective pulse, whereas our method uses small flip angle

pulses. However, the advantage of the Zangger–Sterk approach is that cross peaks are not

generated. On the other hand, the Zangger–Sterk method requires one to choose the selectivity

of the refocusing pulse which is a compromise between sensitivity and the ability to decouple

nearby multiplets.
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All of these methods fail in the presence of strong coupling, which usually results in the

generation of extra unwanted signals (‘artefacts’) and perturbation of intensities. Such signals

are genuine responses from the spin system – they are not really artefacts, but they are certainly

unwanted. Recently, it has been shown that such signals can be removed from two-dimensional

J-spectra, although at the expense of considerable time and effort.13

In conclusion, we believe that our method is a useful addition to the armory of NMR tech-

niques for spectral simplification. It is straightforward to apply, does not require any special

hardware, and it does not use any unusual data processing. We expect that the method will be

particularly useful in the analysis of mixtures and in quantitative experiments such as DOSY.
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