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9 Coherence Selection:
Phase Cycling and Gradient Pulses†

9.1 Introduction

The pulse sequence used in an NMR experiment is carefully designed to
produce a particular outcome.  For example, we may wish to pass the spins
through a state of multiple quantum coherence at a particular point, or plan
for the magnetization to be aligned along the z-axis during a mixing period.
However, it is usually the case that the particular series of events we
designed the pulse sequence to cause is only one out of many possibilities.
For example, a pulse whose role is to generate double-quantum coherence
from anti-phase magnetization may also generate zero-quantum coherence
or transfer the magnetization to another spin.  Each time a radiofrequency
pulse is applied there is this possibility of branching into many different
pathways.  If no steps are taken to suppress these unwanted pathways the
resulting spectrum will be hopelessly confused and uninterpretable.

There are two general ways in which one pathway can be isolated from
the many possible.  The first is phase cycling.  In this method the phases of
the pulses and the receiver are varied in a systematic way so that the signal
from the desired pathways adds and signal from all other pathways cancels.
Phase cycling requires that the experiment is repeated several times,
something which is probably required in any case in order to achieve the
required signal-to-noise ratio.

The second method of selection is to use field gradient pulses.  These are
short periods during which the applied magnetic field is made
inhomogeneous.  As a result, any coherences present dephase and are
apparently lost.  However, this dephasing can be undone, and the coherence
restored, by application of a subsequent gradient.  We shall see that this
dephasing and rephasing approach can be used to select particular
coherences.  Unlike phase cycling, the use of field gradient pulses does not
require repetition of the experiment.

Both of these selection methods can be described in a unified framework
which classifies the coherences present at any particular point according to a
coherence order and then uses coherence transfer pathways to specify the
desired outcome of the experiment.

9.2 Phase in NMR

In NMR we have control over both the phase of the pulses and the receiver
phase.  The effect of changing the phase of a pulse is easy to visualise in the
usual rotating frame.  So, for example, a 90° pulse about the x-axis rotates
magnetization from z onto –y, whereas the same pulse applied about the y-
axis rotates the magnetization onto the x-axis.  The idea of the receiver
phase is slightly more complex and will be explored in this section.
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The NMR signal – that is the free induction decay – which emerges from
the probe is a radiofrequency signal oscillating at close to the Larmor
frequency (usually hundreds of MHz).  Within the spectrometer this signal
is shifted down to a much lower frequency in order that it can be digitized
and then stored in computer memory.  The details of this down-shifting
process can be quite complex, but the overall result is simply that a fixed
frequency, called the receiver reference or carrier, is subtracted from the
frequency of the incoming NMR signal.  Frequently, this receiver reference
frequency is the same as the transmitter frequency used to generate the
pulses applied to the observed nucleus.  We shall assume that this is the case
from now on.

The rotating frame which we use to visualise the effect of pulses is set at
the transmitter frequency, ωrf, so that the field due to the radiofrequency
pulse is static.  In this frame, a spin whose Larmor frequency is ω0 precesses
at (ω0 – ωrf), called the offset Ω.  In the spectrometer the incoming signal at
ω0 is down-shifted by subtracting the receiver reference which, as we have
already decided, will be equal to the frequency of the radiofrequency pulses.
So, in effect, the frequencies of the signals which are digitized in the
spectrometer are the offset frequencies at which the spins evolve in the
rotating frame.  Often this whole process is summarised by saying that the
"signal is detected in the rotating frame".

9.1.1 Detector phase

The quantity which is actually detected in an NMR experiment is the
transverse magnetization.  Ultimately, this appears at the probe as an
oscillating voltage, which we will write as

S tFID = cosω0

where ω0 is the Larmor frequency.  The down-shifting process in the
spectrometer is achieved by an electronic device called a mixer; this
effectively multiplies the incoming signal by a locally generated reference
signal, Sref, which we will assume is oscillating at ωrf

S tref rf= cosω
The output of the mixer is the product SFIDSref
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The first term is an oscillation at a high frequency (of the order of twice the
Larmor frequency as ω0 ≈ ωrf) and is easily removed by a low-pass filter.
The second term is an oscillation at the offset frequency, Ω.  This is in line
with the previous comment that this down-shifting process is equivalent to
detecting the precession in the rotating frame.

We can go further with this interpretation and say that the second term
represents the component of the magnetization along a particular axis
(called the reference axis) in the rotating frame.  Such a component varies
as cos Ωt, assuming that at time zero the magnetization is aligned along the
chosen axis; this is illustrated below
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θ

t = 0 time t

At time zero the magnetization is assumed to be aligned along the reference axis.  After time t the
magnetization has precessed through an angle θ = Ωt.  The projection of the magnetization onto the
reference axis is proportional to cos Ωt.

Suppose now that the phase of the reference signal is shifted by φ,
something which is easily achieved in the spectrometer.  Effectively, this
shifts the reference axis by φ, as shown below

φ

t = 0 time t

θ φ–

Shifting the phase of the receiver reference by φ is equivalent to detecting the component along an axis
rotated by φ from its original position (the previous axis is shown in grey).  Now the apparent angle of
precession is θ = Ωt – φ. and the projection of the magnetization onto the reference axis is proportional
to cos (Ωt – φ).

The component along the new reference axis is proportional to cos Ωt −( )φ .
How this is put to good effect is described in the next section.

9.1.2 Quadrature detection

We normally want to place the transmitter frequency in the centre of the
resonances of interest so as to minimise off-resonance effects.  If the
receiver reference frequency is the same as the transmitter frequency, it
immediately follows that the offset frequencies, Ω, may be both positive
and negative.  However, as we have seen in the previous section the effect
of the down-shifting scheme used is to generate a signal of the form cos Ωt.
Since cos(θ) = cos(–θ) such a signal does not discriminate between positive
and negative offset frequencies.  The resulting spectrum, obtained by
Fourier transformation, would be confusing as each peak would appear at
both +Ω and –Ω.

The way out of this problem is to detect the signal along two
perpendicular axes.  As is illustrated opposite, the projection along one axis
is proportional to cos(Ωt) and to sin(Ωt) along the other.  Knowledge of
both of these projections enables us to work out the sense of rotation of the
vector i.e. the sign of the offset.

The sin modulated component is detected by having a second mixer fed
with a reference whose phase is shifted by π/2.  Following the above
discussion the output of the mixer is

θ x

y

The x and y projections of the
black vector are both positive.
If the vector had precessed in
the opposite direction (shown
shaded), and at the same
frequency, the projection along
x would be the same, but along
y it would be minus that of the
black vector.
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The output of these two mixers can be regarded as being the components of
the magnetization along perpendicular axes in the rotating frame.

The final step in this whole process is regard the outputs of the two
mixers as being the real and imaginary parts of a complex number:

cos sin expΩ Ω Ωt t t+ = ( )i i

The overall result is the generation of a complex signal whose phase varies
according to the offset frequency Ω.

9.1.3 Control of phase

In the previous section we supposed that the signal coming from the probe
was of the form cosω0t but it is more realistic to write the signal as
cos(ω0t + φsig) in recognition of the fact that in addition to a frequency the
signal has a phase, φsig.  This phase is a combination of factors that are not
under our control (such as phase shifts produced in the amplifiers and filters
through which the signal passes) and a phase due to the pulse sequence,
which certainly is under our control.

The overall result of this phase is simply to multiply the final complex
signal by a phase factor, exp(iφsig):

exp expi i sigΩt( ) ( )φ

As we saw in the previous section, we can also introduce another phase shift
by altering the phase of the reference signal fed to the mixer, and indeed we
saw that the cosine and sine modulated signals are generated by using two
mixers fed with reference signals which differ in phase by π/2.  If the phase
of each of these reference signals is advanced by φrx, usually called the
receiver phase, the output of the two mixers becomes cos Ωt −( )φrx  and
sin Ωt −( )φrx .  In the complex notation, the overall signal thus acquires
another phase factor

exp exp expi i isig rxΩt( ) ( ) −( )φ φ

Overall, then, the phase of the final signal depends on the difference
between the phase introduced by the pulse sequence and the phase
introduced by the receiver reference.

9.1.4 Lineshapes

Let us suppose that the signal can be written

S t B t t T( ) = ( ) ( ) −( )exp exp expi iΩ Φ 2

where Φ is the overall phase (= −φ φsig rx ) and B is the amplitude.  The term,
exp(-t/T2) has been added to impose a decay on the signal.  Fourier
transformation of S(t) gives the spectrum S(ω):

S B A Dω ω ω( ) = ( ) + ( )[ ] ( )i iexp Φ [1]
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where A(ω) is an absorption mode lorentzian lineshape centred at ω = Ω and
D(ω) is the corresponding dispersion mode lorentzian:
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Normally we display just the real part of S(ω) which is, in this case,

Re cos sinS B A Dω ω ω( )[ ] = ( ) − ( )[ ]Φ Φ
In general this is a mixture of the absorption and dispersion lineshape.  If we
want just the absorption lineshape we need to somehow set Φ to zero, which
is easily done by multiplying S(ω) by a phase factor exp(iΘ).

S B A D

B A D

ω ω ω

ω ω

( ) ( ) = ( ) + ( )[ ] ( ) ( )
= ( ) + ( )[ ] +[ ]( )

exp exp exp

exp

i i i i

i i

Θ Φ Θ

Φ Θ

As this is a numerical operation which can be carried out in the computer
we are free to choose Θ to be the required value (here –Φ) in order to
remove the phase factor entirely and hence give an absorption mode
spectrum in the real part.  This is what we do when we "phase the
spectrum".

9.1.5 Relative phase and lineshape

We have seen that we can alter the phase of the spectrum by altering the
phase of the pulse or of the receiver, but that what really counts is the
difference in these two phases.

We will illustrate this with the simple vector diagrams shown below.
Here, the vector shows the position of the magnetization at time zero and its
phase, φsig, is measured anti-clockwise from the x-axis.  The dot shows the
axis along which the receiver is aligned; this phase, φrx, is also measured
anti-clockwise from the x-axis.

If the vector and receiver are aligned along the same axis, Φ = 0, and the
real part of the spectrum shows the absorption mode lineshape.  If the
receiver phase is advanced by π/2, Φ = 0 – π/2 and, from Eq. [1]

S B A D

B A D

ω ω ω π

ω ω

( ) = ( ) + ( )[ ] −( )
= − ( ) + ( )[ ]

i i

i

exp 2

This means that the real part of the spectrum shows a dispersion lineshape.
On the other hand, if the magnetization is advanced by π/2, Φ  = φsig – φrx

= π/2 – 0 = π/2 and it can be shown from Eq. [1] that the real part of the
spectrum shows a negative dispersion lineshape.  Finally, if either phase is
advanced by π, the result is a negative absorption lineshape.

absorption

dispersion

Ω
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9.1.6 CYCLOPS

The CYCLOPS phase cycling scheme is commonly used in even the
simplest pulse-acquire experiments.  The sequence is designed to cancel
some imperfections associated with errors in the two phase detectors
mentioned above; a description of how this is achieved is beyond the scope
of this discussion.  However, the cycle itself illustrates very well the points
made in the previous section.

There are four steps in the cycle, the pulse phase goes x, y, –x, –y i.e. it
advances by 90° on each step; likewise the receiver advances by 90° on
each step.  The figure below shows how the magnetization and receiver
phases are related for the four steps of this cycle

x–x

y

–y

pulse x y –x –y

receiver x y –x –y

Although both the receiver and the magnetization shift phase on each step,
the phase difference between them remains constant.  Each step in the cycle
thus gives the same lineshape and so the signal adds on all four steps, which
is just what is required.

Suppose that we forget to advance the pulse phase; the outcome is quite
different
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x–x

y

–y

pulse x x x x

receiver x y –x –y

Now the phase difference between the receiver and the magnetization is no
longer constant.  A different lineshape thus results from each step and it is
clear that adding all four together will lead to complete cancellation (steps 2
and 4 cancel, as do steps 1 and 3).  For the signal to add up it is clearly
essential for the receiver to follow the magnetization.

9.1.7 EXORCYLE

EXORCYLE is perhaps the original phase cycle.  It is a cycle used for 180°
pulses when they form part of a spin echo sequence.  The 180° pulse cycles
through the phases x, y, –x, –y and the receiver phase goes x, –x, x, –x.  The
diagram below illustrates the outcome of this sequence

x–x

y

y

–y

–y

90°(x) – 

180°(±x)  

180°(±y)  

τ

τ

τ

If the phase of the 180° pulse is +x or –x the echo forms along the y-axis,
whereas if the phase is ±y the echo forms on the –y axis.  Therefore, as the
180° pulse is advanced by 90° (e.g. from x to y) the receiver must be
advanced by 180° (e.g. from x to –x).  Of course, we could just as well cycle
the receiver phases y, –y, y, –y; all that matters is that they advance in steps
of 180°.  We will see later on how it is that this phase cycle cancels out the
results of imperfections in the 180° pulse.
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9.1.8 Difference spectroscopy

Often a simple two step sequence suffices to cancel unwanted
magnetization; essentially this is a form of difference spectroscopy.  The
idea is well illustrated by the INEPT sequence, shown opposite.  The aim of
the sequence is to transfer magnetization from spin I to a coupled spin S.

With the phases and delays shown equilibrium magnetization of spin I, Iz,
is transferred to spin S , appearing as the operator Sx.  Equilibrium
magnetization of S, Sz, appears as Sy.  We wish to preserve only the signal
that has been transferred from I.

The procedure to achieve this is very simple.  If we change the phase of
the second I spin 90° pulse from y to –y the magnetization arising from
transfer of the I spin magnetization to S  becomes –Sx  i.e. it changes sign.
In contrast, the signal arising from equilibrium S spin magnetization is
unaffected simply because the Sz operator is unaffected by the I spin pulses.
By repeating the experiment twice, once with the phase of the second I spin
90° pulse set to y and once with it set to –y, and then subtracting the two
resulting signals, the undesired signal is cancelled and the desired signal
adds.  It is easily confirmed that shifting the phase of the S spin 90° pulse
does not achieve the desired separation of the two signals as both are
affected in the same way.

In practice the subtraction would be carried out by shifting the receiver
by 180°, so the I spin pulse would go y, –y and the receiver phase go x, –x.
This is a two step phase cycle which is probably best viewed as difference
spectroscopy.

This simple two step cycle is the basic element used in constructing the
phase cycling of many two- and three-dimensional heteronuclear
experiments.

9.2 Coherence transfer pathways

Although we can make some progress in writing simple phase cycles by
considering the vector picture, a more general framework is needed in order
to cope with experiments which involve multiple-quantum coherence and
related phenomena.  We also need a theory which enables us to predict the
degree to which a phase cycle can discriminate against different classes of
unwanted signals.  A convenient and powerful way of doing both these
things is to use the coherence transfer pathway approach.

9.2.1 Coherence order

Coherences, of which transverse magnetization is one example, can be
classified according to a coherence order, p, which is an integer taking
values 0, ± 1, ± 2 ...  Single quantum coherence has p = ± 1, double has
p = ± 2 and so on; z-magnetization, "zz" terms and zero-quantum coherence
have p = 0.  This classification comes about by considering the phase which
different coherences acquire is response to a rotation about the z-axis.

A coherence of order p, represented by the density operator σ p( ) , evolves
under a z-rotation of angle φ according to

I

S

y

2J
1

2J
1

Pulse sequence for INEPT.
Filled rectangles represent 90°
pulses and open rectangles
represent 180° pulses.  Unless
otherwise indicated, all pulses
are of phase x.
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exp exp exp−( ) ( ) = −( )( ) ( )i i iφ σ φ φ σF F pz
p

z
p [2]

where Fz is the operator for the total z-component of the spin angular
momentum.  In words, a coherence of order p experiences a phase shift of
–pφ.  Equation [2] is the definition of coherence order.

To see how this definition can be applied, consider the effect of a z-
rotation on transverse magnetization aligned along the x-axis.  Such a
rotation is identical in nature to that due to evolution under an offset, and
using product operators it can be written

exp exp cos sin−( ) ( ) = +i iφ φ φ φI I I I Iz x z x y [3]

The right hand sides of Eqs. [2] and [3] are not immediately comparable,
but by writing the sine and cosine terms as complex exponentials the
comparison becomes clearer.  Using

cos exp exp exp expφ φ φ φ φ φ= ( ) + −( )[ ] = ( ) − −( )[ ]1
2

1
2i i     in i iis

Eq. [3] becomes

exp exp

exp exp exp exp

exp exp

−( ) ( )
= ( ) + −( )[ ] + ( ) − −( )[ ]
= +[ ] ( ) + −[ ] −( )

i i

i i i i

i i

i
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φ φ
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φ φ

I I I

I I

I I I I

z x z

x y

x y x y

1
2

1
2

1
2

1 1
2

1

It is now clear that the first term corresponds to coherence order –1 and the
second to +1; in other words, Ix is an equal mixture of coherence orders ±1.

The cartesian product operators do not correspond to a single coherence
order so it is more convenient to rewrite them in terms of the raising and
lowering operators, I+ and I–, defined as

I I I I I Ix y x y+ = + =i     i– –

from which it follows that
I I I I I Ix = +[ ] = −[ ]+ +

1
2

1
2– –    y i [4]

Under z-rotations the raising and lowering operators transform simply

exp exp exp−( ) ( ) = ( )± ±i i iφ φ φI I I Iz z m

which, by comparison with Eq. [2] shows that I+ corresponds to coherence
order +1 and I– to –1.  So, from Eq. [4] we can see that Ix and Iy correspond
to mixtures of coherence orders +1 and –1.

As a second example consider the pure double quantum operator for two
coupled spins,

2 21 2 1 2I I I Ix y y x+

Rewriting this in terms of the raising and lowering operators gives

1
1 2 1 2i I I I I+ + − −−( )

The effect of a z-rotation on the term I I1 2
+ +  is found as follows:

exp exp exp exp

exp exp exp

exp exp exp

−( ) −( ) ( ) ( )
= −( ) −( ) ( )
= −( ) −( ) = −( )

+ +

+ +

+ + + +

i i i i

i i i

i i i

φ φ φ φ

φ φ φ

φ φ φ

I I I I I I

I I I I

I I I I

z z z z

z z

1 2 1 2 2 1

1 1 2 1

1 2 1 22
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Thus, as the coherence experiences a phase shift of –2φ the coherence is
classified according to Eq. [2] as having p = 2.  It is easy to confirm that the
term I I1 2− −  has p  = –2.  Thus the pure double quantum term,
2 21 2 1 2I I I Ix y y x+ , is an equal mixture of coherence orders +2 and –2.

As this example indicates, it is possible to determine the order or orders
of any state by writing it in terms of raising and lowering operators and then
simply inspecting the number of such operators in each term.  A raising
operator contributes +1 to the coherence order whereas a lowering operator
contributes –1.  A z-operator, Iiz, has coherence order 0 as it is invariant to z-
rotations.

Coherences involving heteronuclei can be assigned both an overall order
and an order with respect to each nuclear species.  For example the term
I S1 1+ –

 has an overall order of 0, is order +1 for the I spins and –1 for the S
spins.  The term I I S z1 2 1+ +  is overall of order 2, is order 2 for the I spins and
is order 0 for the S spins.

9.2.2 Evolution under offsets

The evolution under an offset, Ω, is simply a z-rotation, so the raising and
lowering operators simply acquire a phase Ωt

  exp exp exp−( ) ( ) = ( )± ±i i iΩ Ω ΩtI I tI t Iz z m

For products of these operators, the overall phase is the sum of the phases
acquired by each term

exp exp exp exp

exp

−( ) −( ) ( ) ( )
= −( )( )

− +

− +

i i i i

i

Ω Ω Ω Ω

Ω Ω

j jz i iz i j i iz j jz

i j i j

tI tI I I tI tI

t I I

It also follows that coherences of opposite sign acquire phases of opposite
signs under free evolution.  So the operator I1+I2+ (with p = 2) acquires a
phase –(Ω1 + Ω2)t i.e. it evolves at a frequency –(Ω1 + Ω2) whereas the
operator I1–I2– (with p = –2) acquires a phase (Ω1 + Ω2)t i.e. it evolves at a
frequency (Ω1 + Ω2).  We will see later on that this observation has
important consequences for the lineshapes in two-dimensional NMR.

The observation that coherences of different orders respond differently to
evolution under a z-rotation (e.g. an offset) lies at the heart of the way in
which gradient pulses can be used to separate different coherence orders.

9.2.3 Phase shifted pulses

In general, a radiofrequency pulse causes coherences to be transferred from
one order to one or more different orders; it is this spreading out of the
coherence which makes it necessary to select one transfer among many
possibilities.  An example of this spreading between coherence orders is the
effect of a non-selective pulse on antiphase magnetization, such as 2I1xI2z,
which corresponds to coherence orders ±1.  Some of the coherence may be
transferred into double- and zero-quantum coherence, some may be
transferred into two-spin order and some will remain unaffected.  The
precise outcome depends on the phase and flip angle of the pulse, but in
general we can see that there are many possibilities.
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If we consider just one coherence, of order p, being transferred to a
coherence of order p' by a radiofrequency pulse we can derive a very
general result for the way in which the phase of the pulse affects the phase
of the coherence.  It is on this relationship that the phase cycling method is
based.

We will write the initial state of order p as σ p( ) , and the final state of
order p' as σ p'( ) .  The effect of the radiofrequency pulse causing the transfer
is represented by the (unitary) transformation Uφ  where φ is the phase of the
pulse.  The initial and final states are related by the usual transformation

U Up p
0 0

1σ σ( ) ( )= +– ' terms of other orders [5]

which has been written for phase 0; the other terms will be dropped as we
are only interested in the transfer from p to p'.  The transformation brought
about by a radiofrequency pulse phase shifted by φ, Uφ, is related to that
with the phase set to zero, U0, in the following way

U F U Fz zφ φ φ= −( ) ( )exp expi i0 [6]

Using this, the effect of the phase shifted pulse on the initial state σ p( )  can
be written

U U

F U F F U F

p

z z
p

z z

φ φσ

φ φ σ φ φ

( )

( )= −( ) ( ) −( ) ( )

–

–exp exp exp exp

1

0 0
1i i i i

[7]

The central three terms can be simplified by application of Eq. [2]

exp exp exp–i i iφ σ φ φ σF F U pz
p

z
p( ) −( ) = ( )( ) ( )

0
1

giving

U U p F U U Fp
z

p
zφ φσ φ φ σ φ( ) ( )= ( ) −( ) ( )– –exp exp exp1

0 0
1i i i

The central three terms can, from Eq. [5], be replaced by σ p'( )  to give

U U p F Fp
z

p
zφ φσ φ φ σ φ( ) ( )= ( ) −( ) ( )– 'exp exp exp1 i i i

Finally, Eq. [5] is applied again to give

U U p pp p
φ φσ φ φ σ( ) ( )= ( ) ( )– 'exp exp '1 i –i

Defining ∆p = (p' – p) as the change is coherence order, this simplifies to

U U pp p
φ φσ φ σ( ) ( )= ( )– 'exp –1 i∆ [8]

Equation [8] says that if the phase of a pulse which is causing a change in
coherence order of ∆p is shifted by φ the coherence will acquire a phase
label (–∆p φ).  It is this property which enables us to separate different
changes in coherence order from one another by altering the phase of the
pulse.

In the discussion so far it has been assumed that Uφ represents a single
pulse.  However, any sequence of pulses and delays can be represented by a
single unitary transformation, so Eq. [8] applies equally well to the effect of
phase shifting all of the pulses in such a sequence.  We will see that this
property is often of use in writing phase cycles.

If a series of phase shifted pulses (or pulse sandwiches) are applied a
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phase (–∆p φ) is acquired from each.  The total phase is found by adding up
these individual contributions.  In an NMR experiment this total phase
affects the signal which is recorded at the end of the sequence, even though
the phase shift may have been acquired earlier in the pulse sequence.  These
phase shifts are, so to speak, carried forward.

9.2.4 Coherence transfer pathways diagrams

In designing a multiple-pulse NMR experiment the intention is to have
specific orders of coherence present at various points in the sequence.  One
way of indicating this is to use a coherence transfer pathway (CTP) diagram
along with the timing diagram for the pulse sequence.  An example of
shown below, which gives the pulse sequence and CTP for the DQF COSY
experiment.

t1 t2

2
1
0

–1
–2

p

∆p=±1 ±1,±3
+1,–3

The solid lines under the sequence represent the coherence orders required
during  each part of the sequence; note that it is only the pulses which cause
a change in the coherence order.  In addition, the values of ∆p are shown for
each pulse.  In this example, as is commonly the case, more than one order
of coherence is present at a particular time.  Each pulse is required to cause
different changes to the coherence order – for example the second pulse is
required to bring about no less than four values of ∆p.  Again, this is a
common feature of pulse sequences.

It is important to realise that the CTP specified with the pulse sequence is
just the desired pathway.  We would need to establish separately (for
example using a product operator calculation) that the pulse sequence is
indeed capable of generating the coherences specified in the CTP.  Also, the
spin system which we apply the sequence to has to be capable of supporting
the coherences.  For example, if there are no couplings, then no double
quantum will be generated and thus selection of the above pathway will
result in a null spectrum.

The coherence transfer pathway must start with p = 0 as this is the order
to which equilibrium magnetization (z-magnetization) belongs.  In addition,
the pathway has to end with |p| = 1 as it is only single quantum coherence
that is observable.  If we use quadrature detection (section 9.1.2) it turns out
that only one of p = ±1 is observable; we will follow the usual convention of
assuming that p = –1 is the detectable signal.
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9.3 Lineshapes and frequency discrimination

9.3.1 Phase and amplitude modulation

The selection of a particular CTP has important consequences for lineshapes
and frequency discrimination in two-dimensional NMR.  These topics are
illustrated using the NOESY experiment as an example; the pulse sequence
and CTP is illustrated opposite.

If we imagine starting with Iz, then at the end of t1 the operators present
are

− +cos sinΩ Ωt I t Iy x1 1

The term in Iy is rotated onto the z-axis and we will assume that only this
term survives.  Finally, the z-magnetization is made observable by the last
pulse (for convenience set to phase –y) giving the observable term present at
t2 = 0 as

cosΩt Ix1

As was noted in section 9.2.1, Ix is in fact a mixture of coherence orders
p = ±1, something which is made evident by writing the operator in terms of
I+ and I–

1
2 1cosΩt I I+ −+( )

Of these operators, only I– leads to an observable signal, as this corresponds
to p = –1.  Allowing I– to evolve in t2 gives

1
2 1 2cos expΩ Ωt t Ii( ) −

The final detected signal can be written as

S t t t tC i1 2
1
2 1 2, cos exp( ) = ( )Ω Ω

This signal is said to be amplitude modulated in t1; it is so called because the
evolution during t1 gives rise, via the cosine term, to a modulation of the
amplitude of the observed signal.

The situation changes if we select a different pathway, as shown
opposite.  Here, only coherence order –1 is preserved during t1.  At the start
of t1 the operator present is –Iy which can be written

− −( )+ −
1
2i I I

Now, in accordance with the CTP, we select only the I– term.  During t1 this
evolves to give

1
2 1i iexp Ωt I( ) −

Following through the rest of the pulse sequence as before gives the
following observable signal

S t t t tP i i1 2
1
4 1 2, exp exp( ) = ( ) ( )Ω Ω

This signal is said to be phase modulated in t1; it is so called because the
evolution during t1 gives rise, via exponential term, to a modulation of the
phase of the observed signal. If we had chosen to select p = +1 during t1 the
signal would have been

t1 t2

1
0

–1

τm

–y

t1 t2

1
0

–1

τm

–y
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S t t t tN –i i1 2
1
4 1 2, exp exp( ) = ( ) ( )Ω Ω

which is also phase modulated, except in the opposite sense.  Note that in
either case the phase modulated signal is one half of the size of the
amplitude modulated signal, because only one of the two pathways has been
selected.

Although these results have been derived for the NOESY sequence, they
are in fact general for any two-dimensional experiment.  Summarising, we
find

• If a single coherence order is present during t1 the result is phase
modulation in t1.  The phase modulation can be of the form exp(iΩt1) or
exp(–iΩt1) depending on the sign of the coherence order present.

• If both coherence orders ±p  are selected during t1, the result is
amplitude modulation in t1; selecting both orders in this way is called
preserving symmetrical pathways.

9.3.2 Frequency discrimination

The amplitude modulated signal contains no information about the sign of
Ω , simply because cos(Ωt1) = cos(–Ωt1).  As a consequence, Fourier
transformation of the time domain signal will result in each peak appearing
twice in the two-dimensional spectrum, once at F1 = +Ω and once at F1 =
–Ω.  As was commented on above, we usually place the transmitter in the
middle of the spectrum so that there are peaks with both positive and
negative offsets.  If, as a result of recording an amplitude modulated signal,
all of these appear twice, the spectrum will hopelessly confused.  A
spectrum arising from an amplitude modulated signal is said to lack
frequency discrimination in F1.

On the other hand, the phase modulated signal is sensitive to the sign of
the offset and so information about the sign of Ω in the F1 dimension is
contained in the signal.  Fourier transformation of the signal SP(t1,t2) gives a
peak at F1 = +Ω , F2 = Ω, whereas Fourier transformation of the signal
SN(t1,t2) gives a peak at F1 = –Ω , F2 = Ω .  Both spectra are said to be
frequency discriminated as the sign of the modulation frequency in t1 is
determined; in contrast to amplitude modulated spectra, each peak will only
appear once.

The spectrum from SP(t1,t2) is called the P-type (P for positive) or echo
spectrum; a diagonal peak appears with the same sign of offset in each
dimension.  The spectrum from SN(t1,t2) is called the N-type (N for negative)
or anti-echo spectrum; a diagonal peak appears with opposite signs in the
two dimensions.

It might appear that in order to achieve frequency discrimination we
should deliberately select a CTP which leads to a P– or an N-type spectrum.
However, such spectra show a very unfavourable lineshape, as discussed in
the next section.

9.3.3 Lineshapes

In section 9.1.4 we saw that Fourier transformation of the signal
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S t t t T( ) = ( ) −( )exp expiΩ 2

gave a spectrum whose real part is an absorption lorentzian and whose
imaginary part is a dispersion lorentzian:

S A Dω ω ω( ) = ( ) + ( )i

We will use the shorthand that A2 represents an absorption mode lineshape
at F2 = Ω  and D2 represents a dispersion mode lineshape at the same
frequency.  Likewise, A1+ represents an absorption mode lineshape at F1 =
+Ω and D1+ represents the corresponding dispersion lineshape.  A1– and D1–

represent the corresponding lines at F1 = –Ω.

The time domain signal for the P-type spectrum can be written as

S t t t t t T t TP i i1 2
1
4 1 2 1 2 2 2, exp exp exp exp( ) = ( ) ( ) −( ) −( )Ω Ω

where the damping factors have been included as before.  Fourier
transformation with respect to t2 gives

S t F t t T A DP i i1 2
1
4 1 1 2 2 2, exp exp( ) = ( ) −( ) +[ ]Ω

and then further transformation with respect to t1 gives

S F F A D A DP i i1 2
1
4 1 1 2 2,( ) = +[ ] +[ ]+ +

The real part of this spectrum is

Re ,S F F A A D DP 1 2
1
4 1 2 1 2( ){ } = −[ ]+ +

The quantity in the square brackets on the right represents a phase-twist
lineshape at F1 = +Ω, F2 = Ω

Perspective view and contour plot of the phase-twist lineshape.  Negative contours are shown dashed.

This lineshape is an inextricable mixture of absorption and dispersion, and it
is very undesirable for high-resolution NMR.  So, although a phase
modulated signal gives us frequency discrimination, which is desirable, it
also results in a phase-twist lineshape, which is not.

The time domain signal for the amplitude modulated data set can be
written as

S t t t t t T t TC i1 2
1
2 1 2 1 2 2 2, cos exp exp exp( ) = ( ) ( ) −( ) −( )Ω Ω

Fourier transformation with respect to t2 gives

S t F t t T A DC i1 2
1
2 1 1 2 2 2, cos exp( ) = ( ) −( ) +[ ]Ω

which can be rewritten as
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S t F t t t T A DC i i i1 2
1
4 1 1 1 2 2 2, exp exp exp( ) = ( ) + −( )[ ] −( ) +[ ]Ω Ω

Fourier transformation with respect to t1 gives, in the real part of the
spectrum

Re , – – –S F F A A D D A A D DC +1 2
1
4 1 2 1 2

1
4 1 2 1 2( ){ } = [ ] + [ ]+ −

This corresponds to two phase-twist lineshapes, one at F1 = +Ω, F2 = Ω and
the other at F1 = –Ω, F2 = Ω; the lack of frequency discrimination is evident.
Further, the undesirable phase-twist lineshape is again present.

The lineshape can be restored to the absorption mode by discarding the
imaginary part of the time domain signal after the transformation with
respect to t2, i.e. by taking the real part

Re , cos expS t F t t T AC 1 2
1
2 1 1 2 2( ){ } = ( ) −( )Ω

Subsequent transformation with respect to t1 gives, in the real part
1
4 1 2

1
4 1 2A A A A+ −+

which is two double absorption mode lineshapes.  Frequency discrimination
is lacking, but the lineshape is now much more desirable.  The spectra with
the two phase-twist and two absorption mode lines are shown below on the
left and right, respectively.

0

F1

F2

0

F1

F2

9.3.4 Frequency discrimination with retention of absorption mode
lineshapes

For practical purposes it is essential to be able to achieve frequency
discrimination and at the same time retain the absorption mode lineshape.
There are a number of ways of doing this.

9.3.4.1 States-Haberkorn-Ruben (SHR) method

The key to this method is the ability to record a cosine modulated data set
and a sine modulated data set.  The latter can be achieved simply by
changing the phase of appropriate pulses.  For example, in the case of the
NOESY experiment, all that is required to generate the sine data set is to
shift the phase of the first 90° pulse by 90° (in fact in the NOESY sequence
the pulse needs to shift from x to –y).  The two data sets have to kept
separate.

The cosine data set is transformed with respect to t1 and the imaginary
part discarded to give

Re , cos expS t F t t T AC 1 2
1
2 1 1 2 2( ){ } = ( ) −( )Ω [9]

The same operation is performed on the sine modulated data set
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S t t t t t T t TS i1 2
1
2 1 2 1 2 2 2, sin exp exp exp( ) = ( ) ( ) −( ) −( )Ω Ω

Re , sin expS t F t t T AS 1 2
1
2 1 1 2 2( ){ } = ( ) −( )Ω [10]

A new complex data set is now formed by using the signal from Eq. [9] as
the real part and that from Eq. [10] as the imaginary part

S t F S t F S t F

t t T A

SHR C Si

i

1 2 1 2 1 2

1
2 1 1 2 2

, Re , Re ,

exp exp

( ) = ( ){ } + ( ){ }
= ( ) −( )Ω

Fourier transformation with respect to t1 gives, in the real part of the
spectrum

Re ,S F F A ASHR 1 2
1
2 1 2( ){ } = +

This is the desired frequency discriminated spectrum with a pure absorption
lineshape.

As commented on above, in NOESY all that is required to change from
cosine to sine modulation is to shift the phase of the first pulse by 90°.  The
general recipe is to shift the phase of all the pulses that precede t1 by
90°/|p1|, where p1 is the coherence order present during t1.  So, for a double
quantum spectrum, the phase shift needs to be 45°.  The origin of this rule is
that, taken together, the pulses which precede t1 give rise to a pathway with
∆p = p1.

In heteronuclear experiments it is not usually necessary to shift the phase
of all the pulses which precede t1; an analysis of the sequence usually shows
that shifting the phase of the pulse which generates the transverse
magnetization which evolves during t1 is sufficient.

9.3.4.2 Echo anti-echo method

We will see in later sections that when we use gradient pulses for coherence
selection the natural outcome is P- or N-type data sets.  Individually, each of
these gives a frequency discriminated spectrum, but with the phase-twist
lineshape.  We will show in this section how an absorption mode lineshape
can be obtained provided both the P- and the N-type data sets are available.

As before, we write the two data sets as

S t t t t t T t T

S t t t t t T t T

P

N

i i

i i

1 2
1
4 1 2 1 2 2 2

1 2
1
4 1 2 1 2 2 2

, exp exp exp exp

, exp exp exp exp

( ) = ( ) ( ) −( ) −( )
( ) = −( ) ( ) −( ) −( )

Ω Ω

Ω Ω

We then form the two combinations

S t t S t t S t t

t t t T t T

S t t S t t S t t

t t t T

C P N

S i P N

i

i

1 2 1 2 1 2

1
2 1 2 1 2 2 2

1 2
1

1 2 1 2

1
2 1 2 1 2

, , ,

cos exp exp exp

, , ,

sin exp exp

( ) = ( ) + ( )
= ( ) ( ) −( ) −( )

( ) = ( ) + ( )[ ]
= ( ) ( ) −

Ω Ω

Ω Ω (( ) −( )exp t T2 2

These cosine and sine modulated data sets can be used as inputs to the SHR
method described in the previous section.

An alternative is to Fourier transform the two data sets with respect to t2

to give
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S t F t t T A D

S t F t t T A D

P

N

i i

i i

1 2
1
4 1 1 2 2 2

1 2
1
4 1 1 2 2 2

, exp exp

, exp – exp

( ) = ( ) −( ) +[ ]
( ) = ( ) −( ) +[ ]

Ω

Ω

We then take the complex conjugate of SN(t1,F2) and add it to SP(t1,F2)

S t F t t T A D

S t F S t F S t F

t t T A

N

N P

i i

i

1 2
1
4 1 1 2 2 2

1 2 1 2 1 2

1
2 1 1 2 2

, * exp exp

, , * ,

exp exp

( ) = ( ) −( ) −[ ]
( ) = ( ) + ( )

= ( ) −( )
+

Ω

Ω

Transformation of this signal gives

S F F A D A+ + +( ) = +[ ]1 2
1
2 1 1 2, i

which is frequency discriminated and has, in the real part, the required
double absorption lineshape.

9.3.4.3 Marion-Wüthrich or TPPI method

The idea behind the TPPI (time proportional phase incrementation) or
Marion–Wüthrich (MW) method is to arrange things so that all of the peaks
have positive offsets.  Then, frequency discrimination is not required as
there is no ambiguity.

One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum.  Simple though this is, it
is not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the
spectrum, but it is made to appear that all the frequencies are positive by
phase shifting some of the pulses in the sequence in concert with the
incrementation of t1.

It was noted above that shifting the phase of the first pulse in the NOESY
sequence from x to –y caused the modulation to change from cos(Ωt1) to
sin(Ωt1).  One way of expressing this is to say that shifting the pulse causes
a phase shift φ in the signal modulation, which can be written cos(Ωt1 + φ).
Using the usual trigonometric expansions this can be written

cos cos cos sin sinΩ Ω Ωt t t1 1 1+( ) = −φ φ φ
If the phase shift, φ, is –π/2 radians the result is

cos cos cos sin sin

sin

Ω Ω Ω
Ω

t t t

t
1 1 1

1

2 2 2+( ) = −( ) − −( )
=

π π π

This is exactly the result we found before.

In the TPPI procedure, the phase φ is made proportional to t1 i.e. each
time t1 is incremented, so is the phase.  We will suppose that

φ ωt t1 1( ) = add

The constant of proportion between the time dependent phase, φ(t1), and t1

has been written ωadd; ωadd has the dimensions of rad s–1 i.e. it is a frequency.
Following the same approach as before, the time-domain function with the
inclusion of this incrementing phase is thus
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cos cos

cos

Ω Ω

Ω

t t t t

t

1 1 1 1

1

+ ( )( ) = +( )
= +( )

φ ω

ω
add

add

In words, the effect of incrementing the phase in concert with t1 is to add a
frequency ωadd  to all of the offsets in the spectrum.  The TPPI method
utilizes this in the following way.

In one-dimensional pulse-Fourier transform NMR the free induction
signal is sampled at regular intervals ∆.  After transformation the resulting
spectrum displays correctly peaks with offsets in the range –(SW/2) to
+(SW/2) where SW is the spectral width which is given by 1/∆ (this comes
about from the Nyquist theorem of data sampling).  Frequencies outside this
range are not represented correctly.

Suppose that the required frequency range in the F1 dimension is from
–(SW1/2) to +(SW1/2).  To make it appear that all the peaks have a positive
offset, it will be necessary to add (SW1/2) to all the frequencies.  Then the
peaks will be in the range 0 to (SW1).

As the maximum frequency is now (S W1) rather than (SW1/2) the
sampling interval, ∆1, will have to be halved i.e. ∆1 = 1/(2SW1) in order that
the range of frequencies present are represented properly.

The phase increment is ωaddt1 , but t1 can be written as n∆1 for the nth
increment of t1.  The required value for ωadd  is 2π(SW1/2) , where the 2π is
to convert from frequency (the units of SW1) to rad s–1, the units of ωadd .
Putting all of this together ωaddt1  can be expressed, for the nth increment as

ω π

π

π

additionalt
SW

n

SW
n

SW

n

1
1

1

1

1

2
2

2
2

1

2

2

= 



( )

= 










=

∆

In words this means that each time t1 is incremented, the phase of the signal
should also be incremented by 90°, for example by incrementing the phase
of one of the pulses.

A data set from an experiment to which TPPI has been applied is simply
amplitude modulated in t1 and so can be processed according to the method
described above for cosine modulated data so as to obtain absorption mode
lineshapes.  As the spectrum is symmetrical about F1 = 0, it is usual to use a
modified Fourier transform routine which saves effort and space by only
calculating the positive frequency part of the spectrum.

9.3.4.4 States-TPPI

When the SHR method is used, axial peaks (arising from magnetization
which has not evolved during t1) appear at F1 = 0; such peaks can be a
nuisance as they may obscure other wanted peaks.  We will see below
(section 9.4.6) that axial peaks can be suppressed with the aid of phase
cycling, all be it at the cost of doubling the length of the phase cycle.

The States-TPPI method does not suppress these axial peaks, but moves

t1 = 0

t2
x

t1 = ∆
t2

y

t1 = 2∆
t2

–x

t1 = 3∆
t2

–y

t1 = 4∆
t1

t2
x

Illustration of the TPPI method.
Each t ime that t1 i s
incremented, so is the phase of
the pulse preceding t1.
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them to the edge of the spectrum so that they are less likely to obscure
wanted peaks.  All that is involved is that, each time t1 is incremented, both
the phase of the pulse which precedes t1 and the receiver phase are advanced
by 180° i.e. the pulse goes x, –x and the receiver goes x, –x.

For non-axial peaks, the two phase shifts cancel one another out, and so
have no effect.  However, magnetization which gives rise to axial peaks
does not experience the first phase shift, but does experience the receiver
phase shift.  The sign alternation in concert with t1 incrementation adds a
frequency of SW1/2 to each peak, thus shifting it to the edge of the spectrum.
Note that in States-TPPI the spectral range in the F1 dimension is –(SW1/2)
to +(SW1/2) and the sampling interval is 1/2SW1, just as in the SHR method.

The nice feature of States-TPPI is that is moves the axial peaks out of the
way without lengthening the phase cycle.  It is therefore convenient to use
in complex three- and four-dimensional spectra were phase cycling is at a
premium.

9.4 Phase cycling

In this section we will start out by considering in detail how to write a phase
cycle to select a particular value of ∆p and then use this discussion to lead
on to the formulation of general principles for constructing phase cycles.
These will then be used to construct appropriate cycles for a number of
common experiments.

9.4.1 Selection of a single pathway

To focus on the issue at hand let us consider the case of transferring from
coherence order +2 to order –1.  Such a transfer has ∆p = (–1 – (2) ) = –3.
Let us imagine that the pulse causing this transformation is cycled around
the four cardinal phases (x, y, –x, –y, i.e. 0°, 90°, 180°, 270°) and draw up a
table of the phase shift that will be experienced by the transferred
coherence.  This is simply computed as – ∆p φ, in this case = – (–3)φ = 3φ.

step pulse phase phase shift experienced by
transfer with ∆p = –3

equivalent phase

1 0 0 0

2 90 270 270

3 180 540 180

4 270 810 90

The fourth column, labelled "equivalent phase", is just the phase shift
experienced by the coherence, column three, reduced to be in the range 0 to
360° by subtracting multiples of 360° (e.g. for step 3 we subtracted 360°
and for step 4 we subtracted 720°).

If we wished to select ∆p = –3 we would simply shift the phase of the
receiver in order to match the phase that the coherence has acquired; these
are the phases shown in the last column.  If we did this, then each step of the
cycle would give an observed signal of the same phase and so they four
contributions would all add up.  This is precisely the same thing as we did
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when considering the CYCLOPS sequence in section 9.1.6; in both cases
the receiver phase follows the phase of the desired magnetization or
coherence.

We now need to see if this four step phase cycle eliminates the signals
from other pathways.  As an example, let us consider a pathway with
∆p = 2, which might arise from the transfer from coherence order –1 to +1.
Again we draw up a table to show the phase experienced by a pathway with
∆p = 2, that is computed as – (2)φ

step pulse
phase

phase shift experienced by
transfer with ∆p = 2

equivalent
phase

rx. phase to
select ∆p = –3

difference

1 0 0 0 0 0

2 90 –180 180 270 270 – 180 = 90

3 180 –360 0 180 180 – 0 = 180

4 270 –540 180 90 90 – 180 = –90

As before, the equivalent phase is simply the phase in column 3 reduced to
the range 0 to 360°.  The fifth column shows the receiver (abbreviated to
rx.) phases determined above for selection of the transfer with ∆p = –3.  The
question we have to ask is whether or not these phase shifts will lead to
cancellation of the transfer with ∆p  = 2.  To do this we compute the
difference between the receiver phase, column 5, and the phase shift
experienced by the transfer with ∆p = 2, column 4.  The results are shown in
column 6, labelled "difference".  Looking at this difference column we can
see that step 1 will cancel with step 3 as the 180° phase shift between them
means that the two signals have opposite sign.  Likewise step 2 will cancel
with step 4 as there is a 180° phase shift between them.  We conclude,
therefore, that this four step cycle cancels the signal arising from a pathway
with
∆p = 2.

An alternative way of viewing the cancellation is to represent the results
of the "difference" column by vectors pointing at the indicated angles.  This
is shown below; it is clear that the opposed vectors cancel one another.

step 1 2 3 4

difference 0°

0°

90° 180° 270°

Next we consider the coherence transfer with ∆p = +1.  Again, we draw
up the table and calculate the phase shifts experience by this transfer, which
are given by – (+1)φ = –φ.
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step pulse
phase

phase shift experienced
by transfer with ∆p = +1

equivalent
phase

rx. phase to
select ∆p = –3

difference

1 0 0 0 0 0

2 90 –90 270 270 270 – 270 = 0

3 180 –180 180 180 180 – 180 = 0

4 270 –270 90 90 90 – 90 = 0

Here we see quite different behaviour.  The equivalent phases, that is the
phase shifts experienced by the transfer with ∆p = 1, match exactly the
receiver phases determined for ∆p = –3, thus the phases in the "difference"
column are all zero.  We conclude that the four step cycle selects transfers
both with ∆p = –3 and +1.

Some more work with tables such as these will reveal that this four step
cycle suppresses contributions from changes in coherence order of –2, –1
and 0.  It selects ∆p = –3 and 1.  It also selects changes in coherence order
of 5, 9, 13 and so on.  This latter sequence is easy to understand.  A pathway
with ∆p = 1 experiences a phase shift of –90° when the pulse is shifted in
phase by 90°; the equivalent phase is thus 270°.  A pathway with ∆p = 5
would experience a phase shift of –5 × 90° = –450° which corresponds to an
equivalent phase of 270°.  Thus the phase shifts experienced for ∆p = 1 and
5 are identical and it is clear that a cycle which selects one will select the
other.  The same goes for the series ∆p = 9, 13 ...

The extension to negative values of ∆p is also easy to see.  A pathway
with ∆p = –3 experiences a phase shift of 270° when the pulse is shifted in
phase by 90°.  A transfer with ∆p = +1 experiences a phase of –90° which
corresponds to an equivalent phase of 270°.  Thus both pathways experience
the same phase shifts and a cycle which selects one will select the other.
The pattern is clear, this four step cycle will select a pathway with ∆p = –3,
as it was designed to, and also it will select any pathway with ∆p = –3 + 4n
where n = ±1, ±2, ±3 ...

9.4.2 General Rules

The discussion in the previous section can be generalised in the following
way.  Consider a phase cycle in which the phase of a pulse takes N evenly
spaced steps covering the range 0 to 2π radians.  The phases, φk, are

φk = 2πk/N where k = 0, 1, 2 ... (N – 1).

To select a change in coherence order, ∆p, the receiver phase is set to
–∆p ×  φk for each step and the resulting signals are summed.  This cycle
will, in addition to selecting the specified change in coherence order, also
select pathways with changes in coherence order (∆p ± nN) where
n = ±1, ±2 ..

The way in which phase cycling selects a series of values of ∆p which
are related by a harmonic condition is closely related to the phenomenon of
aliasing in Fourier transformation.  Indeed, the whole process of phase
cycling can be seen as the computation of a discrete Fourier transformation
with respect to the pulse phase; in this case the Fourier co-domains are
phase and coherence order.
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The fact that a phase cycle inevitably selects more than one change in
coherence order is not necessarily a problem.  We may actually wish to
select more than one pathway, and examples of this will be given below in
relation to specific two-dimensional experiments.  Even if we only require
one value of ∆p we may be able to discount the values selected at the same
time as being improbable or insignificant.  In a system of m coupled spins
one-half, the maximum order of coherence that can be generated is m, thus
in a two spin system we need not worry about whether or not a phase cycle
will discriminate between double quantum and six quantum coherences as
the latter simply cannot be present.  Even in more extended spin systems the
likelihood of generating high-order coherences is rather small and so we
may be able to discount them for all practical purposes.  If a high level of
discrimination between orders is needed, then the solution is simply to use a
phase cycle which has more steps i.e. in which the phases move in smaller
increments.  For example a six step cycle will discriminate between ∆p = +2
and +6, whereas a four step cycle will not.

9.4.3 Refocusing Pulses

A 180° pulse simply changes the sign of the coherence order.  This is easily
demonstrated by considering the effect of such a pulse on the operators I+

and I–.  For example:

I I I I I Ix y
I

x y
x

+ ≡ +( )  → ( ) ≡i iπ – –

corresponds to p = +1 → p = –1.  In a more complex product of operators,
each raising and lowering operator is affected in this way so overall the
coherence order changes sign.

We can now derive the EXORCYLE phase cycle using this property.
Consider a 180° pulse acting on single quantum coherence, for which the
CTP is shown opposite.  For the pathway starting with p = 1 the effect of the
180° pulse is to cause a change with ∆p = –2.  The table shows a four-step
cycle to select this change

Step phase of
180° pulse

phase shift experienced by
transfer with ∆p = –2

Equivalent phase
= rx. phase

1 0 0 0

2 90 180 180

3 180 360 0

4 270 540 180

The phase cycle is thus 0, 90°, 180°, 270° for the 180° pulse and
0° 180° 0° 180° for the receiver; this is precisely the set of phases deduced
before for EXORCYCLE in section 9.1.7.

As the cycle has four steps, a pathway with ∆p = +2 is also selected; this
is the pathway which starts with p = –1 and is transferred to p = +1.
Therefore, the four steps of EXORCYLE select both of the pathways shown
in the diagram above.

A two step cycle, consisting of 0°, 180° for the 180° pulse and 0°, 0° for

1
0

–1

180°

A 180° pulse simply changes
the sign of the coherence order.
The EXORCYLE phase cycling
selects both of the pathways
shown.
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the receiver, can easily be shown to select all even values of ∆p.  This
reduced form of EXORCYCLE is sometimes used when it is necessary to
minimise the number of steps in a phase cycle.  An eight step cycle, in
which the 180° pulse is advanced in steps of 45°, can be used to select the
refocusing of double-quantum coherence in which the transfer is from
p = +2 to –2 (i.e. ∆p = –4) or vice versa.

9.4.4 Combining phase cycles

Suppose that we wish to select the pathway shown opposite; for the first
pulse ∆p is 1 and for the second it is –2.  We can construct a four-step cycle
for each pulse, but to select the overall pathway shown these two cycles
have to be completed independently of one another.  This means that there
will be a total of sixteen steps.  The table shows how the appropriate
receiver cycling can be determined

Step phase of 1st
pulse

phase for
∆p = 1

phase of 2nd
pulse

phase for
∆p = –2

total
phase

equivalent phase =
rx. phase

1 0 0 0 0 0 0

2 90 –90 0 0 –90 270

3 180 –180 0 0 –180 180

4 270 –270 0 0 –270 90

5 0 0 90 180 180 180

6 90 –90 90 180 90 90

7 180 –180 90 180 0 0

8 270 –270 90 180 –90 270

9 0 0 180 360 360 0

10 90 –90 180 360 270 270

11 180 –180 180 360 180 180

12 270 –270 180 360 90 90

13 0 0 270 540 540 180

14 90 –90 270 540 450 90

15 180 –180 270 540 360 0

16 270 –270 270 540 270 270

In the first four steps the phase of the second pulse is held constant and the
phase of the first pulse simply goes through the four steps 0° 90° 180° 270°.
As we are selecting ∆p = 1 for this pulse, the receiver phases are simply 0°,
270°, 180°, 90°.

Steps 5 to 8 are a repeat of steps 1–4 except that the phase of the second
pulse has been moved by 90°.  As ∆p for the second pulse is –2, the
required pathway experiences a phase shift of 180° and so the receiver
phase must be advanced by this much.  So, the receiver phases for steps 5–8
are just 180° ahead of those for steps 1–4.

In the same way for steps 9–12 the first pulse again goes through the
same four steps, and the phase of the second pulse is advanced to 180°.
Therefore, compared to steps 1–4 the receiver phases in steps 9–12 need to
be advanced by – (–2) × 180° = 360° = 0°.  Likewise, the receiver phases for
steps 13–16 are advanced by – (–2) × 270° = 540° = 180°.

1
0

–1
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Another way of looking at this is to consider each step individually.  For
example, compared to step 1, in step 14 the first pulse has been advanced by
90° so the phase from the first pulse is – (1) × 90° = –90°.  The second pulse
has been advanced by 270° so the phase from this is – (–2) × 270° = 540°.
The total phase shift of the required pathway is thus –90 + 540 = 450°
which is an equivalent phase of 90°.  This is the receiver phase shown in the
final column.

The key to devising these sequences is to simply work out the two four-
step cycles independently and then merge them together rather than trying
to work on the whole cycle.  One writes down the first four steps, and then
duplicates this four times as the second pulse is shifted.  We would find the
same steps, in a different sequence, if the phase of the second pulse is
shifted in the first four steps.

We can see that the total size of a phase cycle grows at an alarming rate.
With four phases for each pulse the number of steps grows as 4l where l is
the number of pulses in the sequence.  A three-pulse sequence such as
NOESY or DQF COSY would therefore involve a 64 step cycle.  Such long
cycles put a lower limit on the total time of an experiment and we may end
up having to run an experiment for a long time not to achieve the desired
signal-to-noise ratio but simply to complete the phase cycle.

Fortunately, there are several "tricks" which we can use in order to
shorten the length of a phase cycle.  To appreciate whether or not one of
these tricks can be used in a particular sequence we need to understand in
some detail what the sequence is actually doing and what the likely
problems are going to be.

9.4.5 Tricks

9.4.5.1 The first pulse

All pulse sequences start with equilibrium magnetization, which has
coherence order 0.  It can easily be shown that when a pulse is applied to
equilibrium magnetization the only coherence orders that can be generated
are ±1.  If retaining both of these orders is acceptable (which it often is), it is
therefore not necessary to phase cycle the first pulse in a sequence.

There are two additional points to make here.  If the spins have not
relaxed completely by the start of the sequence the initial magnetization will
not be at equilibrium.  Then, the above simplification does not apply.
Secondly, the first pulse of a sequence is often cycled in order to suppress
axial peaks in two-dimensional spectra.  This is considered in more detail in
section 9.4.6.
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9.4.5.2 Grouping pulses together

The sequence shown opposite can be used to generate multiple quantum
coherence from equilibrium magnetization; during the spin echo anti-phase
magnetization develops and the final pulse transfers this into multiple
quantum coherence.  Let us suppose that we wish to generate double
quantum, with p = ±2, as show by the CTP opposite.

As has already been noted, the first pulse can only generate p = ±1 and
the 180° pulse only causes a change in the sign of the coherence order.  The
only pulse we need to be concerned with is the final one which we want to
generate only double quantum.  We could try to devise a phase cycle for the
last pulse alone or we could simply group all three pulses together and
imagine that, as a group, they achieve the transformation p = 0 to p = ±2 i.e.
∆p = ±2.  The phase cycle would simply be for the three pulses together to
go 0°, 90°, 180°, 270°, with the receiver going 0°, 180°, 0°, 180°.

It has to be recognised that by cycling a group of pulses together we are
only selecting an overall transformation; the coherence orders present
within the group of pulses are not being selected.  It is up to the designer of
the experiment to decide whether or not this degree of selection is sufficient.

The four step cycle mentioned above also selects ∆p = ±6; again, we
would have to decide whether or not such high orders of coherence were
likely to be present in the spin system.  Finally, we note that the ∆p values
for the final pulse are ±1, ±3; it would not be possible to devise a four step
cycle which selects all of these pathways.

9.4.5.3 The last pulse

We noted above that only coherence order –1 is observable.  So, although
the final pulse of a sequence may cause transfer to many different orders of
coherence, only transfers to p = –1 will result in observable signals.  Thus,
if we have already selected, in an unambiguous way, a particular set of
coherence orders present just before the last pulse, no further cycling of this
pulse is needed.

9.4.5.4 Example – DQF COSY

A good example of the applications of these ideas is in devising a phase
cycle for DQF COSY, whose pulse sequence and CTP is shown below.

t1 t2

2
1
0

–1
–2

p

∆p=±1 ±1,±3
+1,–3

Note that we have retained symmetrical pathways in t1 so that absorption
mode lineshapes can be obtained.  Also, both in generating the double
quantum coherence, and in reconverting it to observable magnetization, all
possible pathways have been retained.  If we do not do this, signal intensity
is lost.

One way of viewing this sequence is to group the first two pulses

2
1
0

–1
–2

Pulse sequence for generating
double-quantum coherence.
Note that the 180° pulse simply
causes a change in the sign of
the coherence order.
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together and view them as achieving the transformation 0 → ±2 i.e.
∆p = ±2.  This is exactly the problem considered in section 9.4.5.2, where
we saw that a suitable four step cycle is for the first two pulses to go 0°, 90°,
180°, 270° and the receiver to go 0°, 180°, 0°, 180°.  This unambiguously
selects p = ±2 just before the last pulse, so phase cycling of the last pulse is
not required (see section 9.4.5.3).

An alternative view is to say that as only p = –1 is observable, selecting
the transformation ∆p = +1 and –3 on the last pulse will be equivalent to
selecting p = ±2 during the period just before the last pulse.  Since the first
pulse can only generate p = ±1 (present during t1), the selection of ∆p = +1
and –3 on the last pulse is sufficient to define the CTP completely.

A four step cycle to select ∆p = +1 involves the pulse going 0°, 90°,
180°, 270° and the receiver going 0°, 270°, 180°, 90°.  As this cycle has
four steps is automatically also selects ∆p = –3, just as required.

The first of these cycles also selects ∆p = ±6 for the first two pulses i.e.
filtration through six-quantum coherence; normally, we can safely ignore
the possibility of such high-order coherences.  The second of the cycles also
selects ∆p = +5 and ∆p = –7 on the last pulse; again, these transfers involve
such high orders of multiple quantum that they can be ignored.

9.4.6 Axial peak suppression

Peaks are sometimes seen in two-dimensional spectra at co-ordinates F1 = 0
and F2 = frequencies corresponding to the usual peaks in the spectrum.  The
interpretation of the appearance of these peaks is that they arise from
magnetization which has not evolved during t1 and so has not acquired a
frequency label.

A common source of axial peaks is magnetization which recovers due to
longitudinal relaxation during t1.  Subsequent pulses make this
magnetization observable, but it has no frequency label and so appears at
F1 = 0.  Another source of axial peaks is when, due to pulse imperfections,
not all of the original equilibrium magnetization is moved into the
transverse plane by the first pulse.  The residual longitudinal magnetization
can be made observable by subsequent pulses and hence give rise to axial
peaks.

A simple way of suppressing axial peaks is to select the pathway ∆p = ±1
on the first pulse; this ensures that all signals arise from the first pulse.  A
two-step cycle in which the first pulse goes 0°, 180° and the receiver goes
0°, 180° selects ∆p = ±1.  It may be that the other phase cycling used in the
sequence will also reject axial peaks so that it is not necessary to add an
explicit axial peak suppression steps.  Adding a two-step cycle for axial
peak suppression doubles the length of the phase cycle.

9.4.7 Shifting the whole sequence – CYCLOPS

If we group all of the pulses in the sequence together and regard them as a
unit they simply achieve the transformation from equilibrium
magnetization, p = 0, to observable magnetization, p = –1.  They could be
cycled as a group to select this pathway with ∆p = –1, that is the pulses
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going 0°, 90°, 180°, 270° and the receiver going 0°, 90°, 180°, 270°.  This is
simple the CYCLOPS phase cycle described in section 9.1.6.

If time permits we sometimes add CYCLOPS-style cycling to all of the
pulses in the sequence so as to suppress some artefacts associated with
imperfections in the receiver.  Adding such cycling does, of course, extend
the phase cycle by a factor of four.

This view of the whole sequence as causing the transformation ∆p = –1
also enables us to interchange receiver and pulse phase shifts.  For example,
suppose that a particular step in a phase cycle requires a receiver phase shift
θ.  The same effect can be achieved by shifting all of the pulses by –θ and
leaving the receiver phase unaltered.  The reason this works is that all of the
pulses taken together achieve the transformation ∆p = –1, so shifting their
phases by –θ shift the signal by – (–θ) = θ, which is exactly the effect of
shifting the receiver by θ.  This kind of approach is sometimes helpful if
hardware limitations mean that small angle phase-shifts are only available
for the pulses.

9.4.8 Equivalent cycles

For even a relatively simple sequence such as DQF COSY there are a
number of different ways of writing the phase cycle.  Superficially these can
look very different, but it may be possible to show that they really are the
same.

For example, consider the DQF COSY phase cycle proposed in section
9.4.5.4 where we cycle just the last pulse

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0

2 0 0 90 270

3 0 0 180 180

4 0 0 270 90

Suppose we decide that we do not want to shift the receiver phase, but want
to keep it fixed at phase zero.  As described above, this means that we need
to subtract the receiver phase from all of the pulses.  So, for example, in step
2 we subtract 270° from the pulse phases to give –270°, –270° and –180°
for the phases of the first three pulses, respectively; reducing these to the
usual range gives phases 90°, 90° and 180°.  Doing the same for the other
steps gives a rather strange looking phase cycle, but one which works in just
the same way.

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0

2 90 90 180 0

3 180 180 0 0

4 270 270 180 0

We can play one more trick with this phase cycle.  As the third pulse is
required to achieve the transformation ∆p = –3 or +1 we can alter its phase
by 180° and compensate for this by shifting the receiver by 180° also.
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Doing this for steps 2 and 4 only gives

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0

2 90 90 0 180

3 180 180 0 0

4 270 270 0 180

This is exactly the cycle proposed in section 9.4.5.4.

9.4.9 Further examples

In this section we will use a shorthand to indicate the phases of the pulses
and the receiver.  Rather than specifying the phase in degrees, the phases are
expressed as multiples of 90°.  So, EXORCYCLE becomes 0 1 2 3 for the
180° pulse and 0 2 0 2 for the receiver.

9.4.9.1 Double quantum spectroscopy

A simple sequence for double quantum spectroscopy is shown below

t1 t2

2
1
0

–1
–2

τ τ

Note that both pathways with p = ±1 during the spin echo and with p = ±2
during t1 are retained.  There are a number of possible phase cycles for this
experiment and, not surprisingly, they are essentially the same as those for
DQF COSY.  If we regard the first three pulses as a unit, then they are
required to achieve the overall transformation ∆p = ±2, which is the same as
that for the first two pulses in the DQF COSY sequence.  Thus the same
cycle can be used with these three pulses going 0 1 2 3 and the receiver
going 0 2 0 2.  Alternatively the final pulse can be cycled 0 1 2 3 with
the receiver going 0 3 2 1, as in section 9.4.5.4.

Both of these phase cycles can be extended by EXORCYCLE phase
cycling of the 180° pulse, resulting in a total of 16 steps.

9.4.9.2 NOESY

The pulse sequence for NOESY (with retention of absorption mode
lineshapes) is shown below

t1 t2

1
0

–1

τmix

If we group the first two pulses together they are required to achieve the
transformation ∆p = 0 and this leads to a four step cycle in which the pulses
go 0 1 2 3 and the receiver remains fixed as 0 0 0 0.  In this experiment
axial peaks arise due to z-magnetization recovering during the mixing time,
and this cycle will not suppress these contributions.  Thus we need to add
axial peak suppression, which is conveniently done by adding the simple



9–30

cycle 0 2 on the first pulse and the receiver.  The final 8 step cycle is 1st
pulse: 0 1 2 3  2 3 0 1, 2nd pulse: 0 1 2 3  0 1 2 3, 3rd pulse fixed,
receiver: 0 0 0 0  2 2 2 2.

An alternative is to cycle the last pulse to select the pathway ∆p = –1,
giving the cycle 0 1 2 3 for the pulse and 0 1 2 3 for the receiver.  Once
again, this does not discriminate against z-magnetization which recovers
during the mixing time, so a two step phase cycle to select axial peaks needs
to be added.

9.4.9.3 Heteronuclear Experiments

 The phase cycling for most heteronuclear experiments tends to be rather
trivial in that the usual requirement is simply to select that component which
has been transferred from one nucleus to another.  We have already seen in
section 9.1.8 that this is achieved by a 0 2 phase cycle on one of the pulses
causing the transfer accompanied by the same on the receiver i.e. a
difference experiment.  The choice of which pulse to cycle depends more on
practical considerations than with any fundamental theoretical
considerations.

The pulse sequence for HMQC, along with the CTP, is shown below

t2

1
0

–1

t1

1
0

–1

∆ ∆
I

S

pI

pS

Note that separate coherence orders are assigned to the I and S spins.
Observable signals on the I spin must have pI = –1 and pS = 0 (any other
value of p S would correspond to a heteronuclear multiple quantum
coherence).  Given this constraint, and the fact that the I spin 180° pulse
simply inverts the sign of pI, the only possible pathway on the I spins is that
shown.

The S spin coherence order only changes when pulses are applied to
those spins.  The first 90° S spin pulse generates pS = ±1, just as before.  As
by this point pI = +1, the resulting coherences have pS = +1, pI = –1
(heteronuclear zero-quantum) and pS = +1, pI = +1 (heteronuclear double-
quantum).  The I spin 180° pulse interconverts these midway during t1, and
finally the last S spin pulse returns both pathways to pS = 0.  A detailed
analysis of the sequence shows that retention of both of these pathways
results in amplitude modulation in t1 (provided that homonuclear couplings
between I spins are not resolved in the F1 dimension).

Usually, the I spins are protons and the S spins some low-abundance
heteronucleus, such as 13C.  The key thing that we need to achieve is to
suppress the signals arising from vast majority of I spins which are not
coupled to S spins.  This is achieved by cycling a pulse which affects the
phase of the required coherence but which does not affect that of the
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unwanted coherence.  The obvious targets are the two S spin 90° pulses,
each of which is required to give the transformation ∆pS = ±1.  A two step
cycle with either of these pulses going 0 2 and the receiver doing the same
will select this pathway and, by difference, suppress any I spin
magnetization which has not been passed into multiple quantum coherence.

It is also common to add EXORCYCLE phase cycling to the I spin 180°
pulse, giving a cycle with eight steps overall.

9.4.10 General points about phase cycling

Phase cycling as a method suffers from two major practical problems.  The
first is that the need to complete the cycle imposes a minimum time on the
experiment.  In two- and higher-dimensional experiments this minimum
time can become excessively long, far longer than would be needed to
achieve the desired signal-to-noise ratio.  In such cases the only way of
reducing the experiment time is to record fewer increments which has the
undesirable consequence of reducing the limiting resolution in the indirect
dimensions.

The second problem is that phase cycling always relies on recording all
possible contributions and then cancelling out the unwanted ones by
combining subsequent signals.  If the spectrum has high dynamic range, or
if spectrometer stability is a problem, this cancellation is less than perfect.
The result is unwanted peaks and t1-noise appearing in the spectrum.  These
problems become acute when dealing with proton detected heteronuclear
experiments on natural abundance samples, or in trying to record spectra
with intense solvent resonances.

Both of these problems are alleviated to a large extent by moving to an
alternative method of selection, the use of field gradient pulses, which is the
subject of the next section.  However, as we shall see, this alternative
method is not without its own difficulties.

9.5 Selection with field gradient pulses

9.5.1 Introduction

Like phase cycling, field gradient pulses can be used to select particular
coherence transfer pathways.  During a pulsed field gradient the applied
magnetic field is made spatially inhomogeneous for a short time.  As a
result, transverse magnetization and other coherences dephase across the
sample and are apparently lost.  However, this loss can be reversed by the
application of a subsequent gradient which undoes the dephasing process
and thus restores the magnetization or coherence.  The crucial property of
the dephasing process is that it proceeds at a different rate for different
coherences.  For example, double-quantum coherence dephases twice as fast
as single-quantum coherence.  Thus, by applying gradient pulses of different
strengths or durations it is possible to refocus coherences which have, for
example, been changed from single- to double-quantum by a radiofrequency
pulse.

Gradient pulses are introduced into the pulse sequence in such a way that
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only the wanted signals are observed in each experiment.  Thus, in contrast
to phase cycling, there is no reliance on subtraction of unwanted signals,
and it can thus be expected that the level of t1-noise will be much reduced.
Again in contrast to phase cycling, no repetitions of the experiment are
needed, enabling the overall duration of the experiment to be set strictly in
accord with the required resolution and signal-to-noise ratio.

The properties of gradient pulses and the way in which they can be used
to select coherence transfer pathways have been known since the earliest
days of multiple-pulse NMR.  However, in the past their wide application
has been limited by technical problems which made it difficult to use such
pulses in high-resolution NMR.  The problem is that switching on the
gradient pulse induces currents in any nearby conductors, such as the probe
housing and magnet bore tube.  These induced currents, called eddy
currents, themselves generate magnetic fields which perturb the NMR
spectrum.  Typically, the eddy currents are large enough to disrupt severely
the spectrum and can last many hundreds of milliseconds.  It is thus
impossible to observe a high-resolution spectrum immediately after the
application of a gradient pulse.  Similar problems have beset NMR imaging
experiments and have led to the development of shielded gradient coils
which do not produce significant magnetic fields outside the sample volume
and thus minimise the generation of eddy currents.  The use of this
technology in high-resolution NMR probes has made it possible to observe
spectra within tens of microseconds of applying a gradient pulse.  With such
apparatus, the use of field gradient pulses in high resolution NMR is quite
straightforward, a fact first realised and demonstrated by Hurd whose work
has pioneered this whole area.

9.5.2 Dephasing caused by gradients

A field gradient pulse is a period during which the B0 field is made spatially
inhomogeneous; for example an extra coil can be introduced into the sample
probe and a current passed through the coil in order to produce a field which
varies linearly in the z-direction.  We can imagine the sample being divided
into thin discs which, as a consequence of the gradient, all experience
different magnetic fields and thus have different Larmor frequencies.  At the
beginning of the gradient pulse the vectors representing transverse
magnetization in all these discs are aligned, but after some time each vector
has precessed through a different angle because of the variation in Larmor
frequency.  After sufficient time the vectors are disposed in such a way that
the net magnetization of the sample (obtained by adding together all the
vectors) is zero.  The gradient pulse is said to have dephased the
magnetization.

It is most convenient to view this dephasing process as being due to the
generation by the gradient pulse of a spatially dependent phase.  Suppose
that the magnetic field produced by the gradient pulse, Bg, varies linearly
along the z-axis according to

B Gzg =

where G is the gradient strength expressed in, for example, T m–1 or G cm–1;



9–33

the origin of the z-axis is taken to be in the centre of the sample.  At any
particular position in the sample the Larmor frequency, ωL(z), depends on
the applied magnetic field, B0, and Bg

ω γ γL 0 g 0= +( ) = +( )B B B Gz   ,

where γ is the gyromagnetic ratio.  After the gradient has been applied for
time t, the phase at any position in the sample, Φ(z), is given by
Φ z B Gz t( ) = +( )γ 0 .  The first part of this phase is just that due to the usual
Larmor precession in the absence of a field gradient.  Since this is constant
across the sample it will be ignored from now on (which is formally the
same result as viewing the magnetization in a frame of reference rotating at
γB0).  The remaining term γGzt is the spatially dependent phase induced by
the gradient pulse.

If a gradient pulse is applied to pure x-magnetization, the following
evolution takes place at a particular position in the sample

I Gzt I Gzt Ix
GztI

x y
zγ γ γ → ( ) + ( )cos sin   .

The total x-magnetization in the sample, Mx, is found by adding up the
magnetization from each of the thin discs, which is equivalent to the integral

Mx t( ) = 1
rmax

cos γGzt( ) dz
– 1

2 rmax

1
2 rmax

∫

where it has been assumed that the sample extends over a region ± 1
2 rmax .

Evaluating the integral gives an expression for the decay of x-magnetization
during a gradient pulse

M t
Gr t

Gr tx ( ) = ( )sin 1
2

1
2

γ
γ

max

max

[11]

The plot below shows Mx(t) as a function of time
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Grmaxtγ

The black line shows the decay of magnetization due to the action of a gradient pulse.  The grey line is
an approximation, valid at long times, for the envelope of the decay.

Note that the oscillations in the decaying magnetization are imposed on an
overall decay which, for long times, is given by 2/(γGtrmax).  Equation [11]
embodies the obvious points that the stronger the gradient (the larger G) the
faster the magnetization decays and that magnetization from nuclei with
higher gyromagnetic ratios decays faster.  It also allows a quantitative



9–34

assessment of the gradient strengths required: the magnetization will have
decayed to a fraction α  of its initial value after a time of the order of
2 γ αG rmax( )  (the relation is strictly valid for α << 1).  For example, if it is
assumed that rmax is 1 cm, then a 2 ms gradient pulse of strength 0.37 T m–1

(37 G cm–1) will reduce proton magnetization by a factor of 1000.
Gradients of such strength are readily obtainable using modern shielded
gradient coils that can be built into high resolution NMR probes

This discussion now needs to be generalised for the case of a field
gradient pulse whose amplitude is not constant in time, and for the case of
dephasing a general coherence of order p.  The former modification is of
importance as for instrumental reasons the amplitude envelope of the
gradient is often shaped to a smooth function.  In general after applying a
gradient pulse of duration τ  the spatially dependent phase, Φ(r,τ) is given
by

Φ r sp B r,τ γ τ( ) = ( )g [12]

The proportionality to the coherence order comes about due to the fact that
the phase acquired as a result of a z-rotation of a coherence of order p
through an angle φ is pφ, (see Eqn. [2] in section 9.2.1).  In  Eqn. [12] s is a
shape factor: if the envelope of the gradient pulse is defined by the function
A(t), where A t( ) ≤ 1, s is defined as the area under A(t)

s A t t= ( )∫1

0
τ

τ

d

The shape factor takes a particular value for a certain shape of gradient,
regardless of its duration.  A gradient applied in the opposite sense, that is
with the magnetic field decreasing as the z-coordinate increases rather than
vice versa, is described by reversing the sign of s.  The overall amplitude of
the gradient is encoded within Bg.

In the case that the coherence involves more than one nuclear species,
Eqn. [12] is modified to take account of the different gyromagnetic ratio for
each spin, γi, and the (possibly) different order of coherence with respect to
each nuclear species, pi:

Φ r sB r pi i
i

,τ τ γ( ) = ( ) ∑g

From now on we take the dependence of Φ on r and τ, and of Bg on r as
being implicit.
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9.5.3 Selection by refocusing

The method by which a particular coherence transfer pathway is selected
using field gradients is illustrated opposite.  The first gradient pulse encodes
a spatially dependent phase, Φ1 and the second a phase Φ2 where

Φ Φ1 1 1 1 2 2 2 2= =s p B s p Bγ τ γ τg,1 g,2and   .

After the second gradient the net phase is (Φ1 + Φ2).  To select the pathway
involving transfer from coherence order p1 to coherence order p2, this net
phase should be zero; in other words the dephasing induced by the first
gradient pulse is undone by the second.  The condition (Φ1 + Φ2) = 0 can be
rearranged to

s B

s B

p

p
1 1

2 2

2

1

g,1

g,2

τ
τ

= –

  . [13]

For example, if p1 = +2 and p2 = –1, refocusing can be achieved by making
the second gradient either twice as long (τ2 = 2τ1), or twice as strong
(Bg,2 = 2Bg,1) as the first; this assumes that the two gradients have identical
shape factors.  Other pathways remain dephased; for example, assuming that
we have chosen to make the second gradient twice as strong and the same
duration as the first, a pathway with p1 = +3 to p2 = –1 experiences a net
phase

Φ Φ1 2 1 1 13+ = =sB sB sBg,1 g,2 g,1τ τ τ–   .

Provided that this spatially dependent phase is sufficiently large, according
the criteria set out in the previous section, the coherence arising from this
pathway remains dephased and is not observed.  To refocus a pathway in
which there is no sign change in the coherence orders, for example, p1 = –2
to p2 = –1, the second gradient needs to be applied in the opposite sense to
the first; in terms of Eqn. [13] this is expressed by having s2 = –s1.

The procedure can easily be extended to select a more complex
coherence transfer pathway by applying further gradient pulses as the
coherence is transferred by further pulses, as illustrated opposite.  The
condition for refocusing is again that the net phase acquired by the required
pathway be zero, which can be written formally as

s p Bi i i i
i

γ τg,i∑ = 0   .

With more than two gradients in the sequence, there are many ways in
which a given pathway can be selected.  For example, the second gradient
may be used to refocus the first part of the required pathway, leaving the
third and fourth to refocus another part.  Alternatively, the pathway may be
consistently dephased and the magnetization only refocused by the final
gradient, just before acquisition.

At this point it is useful to contrast the selection achieved using gradient
pulses with that achieved using phase cycling.  From Eqn. [13] it is clear
that a particular pair of gradient pulses selects a particular ratio of
coherence orders; in the above example any two coherence orders in the
ratio –2 : 1 or 2 : –1 will be refocused.  This selection according to ratio of

p1

p2

RF

g
1τ 2τ

Illustration of the use of a pair
of gradients to select a single
pathway.  The radiofrequency
pulses are on the line marked
"RF" and the field gradient
pulses are denoted by shaded
rectangles on the line marked
"g".

RF

g
1τ 3τ 4τ2τ
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coherence orders is in contrast to the case of phase cycling in which a phase
cycle consisting of N steps of 2π/N radians selects a particular change in
coherence order ∆p = p2 – p1, and further pathways which have ∆p = (p2 –
p1) ± mN, where m = 0, 1, 2 ...

It is straightforward to devise a series of gradient pulses which will select
a single coherence transfer pathway.  It cannot be assumed, however, that
such a sequence of gradient pulses will reject all other pathways i.e. leave
coherence from all other pathways dephased at the end of the sequence.
Such assurance can only be given be analysing the fate of all other possible
coherence transfer pathways under the particular gradient sequence
proposed.  In complex pulse sequences there may also be several different
ways in which gradient pulses can be included in order to achieve selection
of the desired pathway.  Assessing which of these alternatives is the best, in
the light of the requirement of suppression of unwanted pathways and the
effects of pulse imperfections may be a complex task.

9.5.3.1 Selection of multiple pathways

As we have seen earlier, it is not unusual to want to select two or more
pathways simultaneously, for example either to maximise the signal
intensity or to retain absorption-mode lineshapes.  A good example of this is
the double-quantum filter pulse sequence element, shown opposite.

The ideal pathway, shown in (a), preserves coherence orders p = ± 2 during
the inter-pulse delay.  Gradients can be used to select the pathway –2 to –1
or +2 to –1, shown in (b) and (c) respectively.  However, no combination of
gradients can be found which will select simultaneously both of these
pathways.  In contrast, it is easy to devise a phase cycle which selects both
of these pathways (section 9.4.5.4).  Thus, selection with gradients will in
this case result in a loss of half of the available signal when compared to an
experiment of equal length which uses selection by phase cycling.  Such a
loss in signal is, unfortunately, a very common feature when gradients are
used for pathway selection.

9.5.3.2 Selection versus suppression

Coherence order zero, comprising z-magnetization, zz-terms and
homonuclear zero-quantum coherence, does not accrue any phase during a
gradient pulse.  Thus, it can be separated from all other orders simply by
applying a single gradient.  In a sense, however, this is not a gradient
selection process; rather it is a suppression of all other coherences.  A
gradient used in this way is often called a purge gradient.  In contrast to
experiments where selection is achieved, there is no inherent sensitivity loss
when gradients are used for suppression.  We will see examples below of
cases where this suppression approach is very useful.

9.5.3.3 Gradients on other axes

The simplest experimental arrangement generates a gradient in which the
magnetic field varies in the z direction, however it is also possible to
generate gradients in which the field varies along x or y.  Clearly, the
spatially dependent phase generated by a gradient applied in one direction

RF

g

2
1
0

–1
–2

p

RF

2
1
0

–1
–2

p

g

RF

2
1
0

–1
–2

p

(a)

(b)

(c)



9–37

cannot be refocused by a gradient applied in a different direction.  In
sequences where more than one pair of gradients are used, it may be
convenient to apply further gradients in different directions to the first pair,
so as to avoid the possibility of accidentally refocusing unwanted coherence
transfer pathways.  Likewise, a gradient which is used to destroy all
coherences can be applied in a different direction to gradients used for
pathway selection.

9.5.4 Refocusing and inversion pulses

Refocusing and inversion pulses play an important role in multiple-pulse
NMR experiments and so the interaction between such pulses and field
gradient pulses will be explored in some detail.  As has been noted above in
section 9.4.3, a perfect refocusing pulse simply changes the sign of the order
of any coherences present, p → –p.  If the pulse is imperfect, there will be
transfer to coherence orders other than –p.

A perfect inversion pulse simply inverts z-magnetization or, more
generally, all z-operators: Iz → –Iz.  If the pulse is imperfect, it will generate
transverse magnetization or other coherences.  Inversion pulses are used
extensively in heteronuclear experiments to control the evolution of
heteronuclear couplings.

We start out the discussion by considering the refocusing of coherences,
illustrated opposite.  The net phase, Φ, at the end of such a sequence is

Φ Ω Ω= + + +( ) ( ' ) 'p psp B sp Bδ γ τ δ γ τg g

where Ω p( )  is the frequency with which coherence of order p evolves in the
absence of a gradient; note that Ω Ω−( ) ( )= −p p .  The net phase is zero if, and
only if, p ' = –p.  With sufficiently strong gradients all other pathways
remain dephased and the gradient sequence thus selects the refocused
component.  As is expected for a spin echo, the underlying evolution of the
coherence (as would occur in the absence of a gradient) is also refocused by
the selection of the pathway shown.  Any transverse magnetization which an
imperfect refocusing pulse might create is also dephased.

Placing equal gradients either side of a refocusing pulse therefore selects
the coherence transfer pathway associated with a perfect refocusing pulse.
This selection works for all coherence orders so, in contrast to the
discussion in section 9.5.3.1, there is no loss of signal.  Such a pair of
gradients are often described as being used to "clean up" a refocusing pulse,
referring to their role in eliminating unwanted pathways.

We cannot use gradients to select the pathway associated with an
inversion pulse as p = 0 both before and after the pulse.  However, we can
apply a gradient after the pulse to dephase any magnetization which might
be created by an imperfect pulse.  Taking the process a step further, we can
apply a gradient both before and after the pulse, with the two gradients in
opposite directions.  The argument here is that this results in the maximum
dephasing of unwanted coherences – both those present before the pulse and
those that might be generated by the pulse.  Again, this sequence is often
described as being used to "clean up" an inversion pulse.

p

p'

RF

g τ τ

180°

δ δ

Gradient sequence used to
"clean up" a refocusing pulse.
Note that the two gradients are
of equal area.  The refocused
pathway has p' = –p.
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g τ
τ

180°

Gradient sequence used to
"clean up" an inversion pulse.
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In heteronuclear experiments an inversion pulse applied to one nucleus is
used to refocus the evolution of a coupling to another nucleus.  For
example, in the sequence shown opposite the centrally placed S spin 180°
pulse refocuses the IS coupling over the period 2δ.  The pair of gradients
shown have no net effect on I spin coherences as the dephasing due to the
first gradient is exactly reversed by the second.  The gradient sequence can
be thought of as "cleaning up" the S spin inversion pulse.

9.5.4.1 Phase errors due to gradient pulses

For the desired pathway, the spatially dependent phase created by a gradient
pulse is refocused by a subsequent gradient pulse.  However, the underlying
evolution of offsets (chemical shifts) and couplings is not refocused, and
phase errors will accumulate due to the evolution of these terms.  Since
gradient pulses are typically of a few milliseconds duration, these phase
errors are substantial.

In multi-dimensional NMR the uncompensated evolution of offsets
during gradient pulses has disastrous effects on the spectra.  This is
illustrated here for the DQF COSY experiment, for which a pulse sequence
using the gradient pulses is shown opposite.  The problem with this
sequence is that the double quantum coherence will evolve during delay τ1.
Normally, the delay between the last two pulses would be a few
microseconds at most, during which the evolution is negligible.  However,
once we need to apply a gradient the delay will need to be of the order of
milliseconds and significant evolution takes place.  The same considerations
apply to the second gradient.

We can investigate the effect of this evolution by analysing the result for
a two-spin system.  In the calculation, it will be assumed that only the
indicated pathway survives and that the spatially dependent part of the
evolution due to the gradients can be ignored as ultimately it is refocused.
The coherence with order of + 2 present during τ1 evolves according to

I I I I iI Iz z

1 2 1 2 1 2 1
1 1 1 2 1 2

+ +
+

+ + → +( )( )Ω Ω Ω Ωτ τ τexp –   ,

where Ω1 and Ω2 are the offsets of spins 1 and 2, respectively.  After the
final 90° pulse and the second gradient the observable terms on spin 1 are

i
2 1 2 1 1 2 1 2 1 2 1 22 2exp – cos sini I I I Ix z y zΩ Ω Ω Ω+( )( ) +[ ]τ τ τ [14]

where it has been assumed that τ2 is sufficiently short that evolution of the
coupling can be ignored.  It is clearly seen from Eqn. [14] that, due to the
evolution during τ2, the multiplet observed in the F2 dimension will be a
mixture of dispersion and absorption anti-phase contributions.  In addition,
there is an overall phase shift due to the evolution during τ1.  The phase
correction needed to restore this multiplet to absorption depends on both the
frequency in F2 and the double-quantum frequency during the first gradient.
Thus, no single linear frequency dependent phase correction could phase
correct a spectrum containing many multiplets.  The need to control these
phase errors is plain.
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In a heteronuclear experiment
(separate pulses shown on the
I and S spins) a 180° pulse on
the S spin refocuses the I S
coupling over the period 2δ.
The gradient pulses shown are
used to "clean up" the inversion
pulse.
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The second gradient is twice
the area of the first.
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The general way to minimise these problems is to associate each gradient
with a refocusing pulse, as shown opposite.  In sequence (a) the gradient is
placed in one of the delays of a spin echo; the evolution of the offset during
the first delay τ is refocused during the second delay τ.  So, overall there are
no phase errors due to the evolution of the offset.

An alternative is the sequence (b).  Here, as in (a), the offset is refocused
over the whole sequence.  The first gradient results in the usually spatially
dependent phase and then the 180° pulse changes the sign of the coherence
order.  As the second gradient is opposite to the first, it causes further
dephasing; effectively, it is as if a gradient of length 2τ is applied.
Sequence (b) will give the same dephasing effect as (a) if each gradient in
(b) is of duration τ/2; the overall sequence will then be of duration τ.  If
losses due to relaxation are a problem, then clearly sequence (b) is to be
preferred as it takes less time than (a).

The sequence below shows the gradient-selected DQF COSY pulse
sequence modified by the inclusion of extra 180° pulses to remove phase
errors.  Note that although the extra 180° pulses are effective at refocusing
offsets, they do not refocus the evolution of homonuclear couplings.  It is
essential, therefore, to keep the gradient pulses as short as is feasible.

g

RF
t1

1τ

1τ 1τ

2τ

2τ 2τ

In many pulse sequences there are already periods during which the
evolution of offsets is refocused.  The evolution of offsets during a gradient
pulse placed within such a period will therefore also be refocused, making it
unnecessary to include extra refocusing pulses.  Likewise, a gradient may be
placed during a "constant time" evolution period of a multi-dimensional
pulse sequence without introducing phase errors in the corresponding
dimension; the gradient simply becomes part of the constant time period.
This approach is especially useful in three- and four-dimensional
experiments used to record spectra of 15N, 13C labelled proteins.

9.5.5 Sensitivity

The use of gradients for coherence selection has consequences for the
signal-to-noise ratio of the spectrum when it is compared to a similar
spectrum recorded using phase cycling.  If a gradient is used to suppress all
coherences other than p = 0, i.e. it is used simply to remove all coherences,
leaving just z-magnetization or zz terms, there is no inherent loss of
sensitivity when compared to a corresponding phase cycled experiment.  If,
however, the gradient is used to select a particular order of coherence the
signal which is subsequently refocused will almost always be half the
intensity of that which can be observed in a phase cycled experiment.  This
factor comes about simply because it is likely that the phase cycled
experiment will be able to retain two symmetrical pathways, whereas the
gradient selection method will only be able to refocus one of these.
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τ τ
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The foregoing discussion applies to the case of a selection gradient
placed in a fixed delay of a pulse sequence.  The matter is different if the
gradient is placed within the incrementable time of a multi-dimensional
experiment, e.g. in t1 of a two-dimensional experiment.  To understand the
effect that such a gradient has on the sensitivity of the experiment it is
necessary to be rather careful in making the comparison between the
gradient selected and phase cycled experiments.  In the case of the latter
experiments we need to include the SHR or TPPI method in order to
achieve frequency discrimination with absorption mode lineshapes.  If a
gradient is used in t1 we will need to record separate P- and N-type spectra
so that they can be recombined to  give an absorption mode spectrum.  We
must also ensure that the two spectra we are comparing have the same
limiting resolution in the t1 dimension, that is they achieve the same
maximum value of t1 and, of course, the total experiment time must be the
same.

The detailed argument which is needed to analyse this problem is beyond
the scope of this lecture; it is given in detail in J. Magn. Reson Ser. A, 111,
70-76 (1994)†.  The conclusion is that the signal-to-noise ratio of an
absorption mode spectrum generated by recombining P- and N-type
gradient selected spectra is lower, by a factor 1 2  , than the corresponding
phase cycled spectrum with SHR or TPPI data processing.

The potential reduction in sensitivity which results from selection with
gradients may be more than compensated for by an improvement in the
quality of the spectra obtained in this way.  Often, the factor which limits
whether or not a cross peak can be seen is not the thermal noise level by the
presence of other kinds of "noise" associated with imperfect cancellation
etc.

9.5.6 Diffusion

The process of refocusing a coherence which has been dephased by a
gradient pulse is inhibited if the spins move either during or between the
defocusing and refocusing gradients.  Such movement alters the magnetic
field experienced by the spins so that the phase acquired during the
refocusing gradient is not exactly opposite to that acquired during the
defocusing gradient.

In liquids there is a translational diffusion of both solute and solvent
which causes such movement at a rate which is fast enough to cause
significant effects on NMR experiments using gradient pulses.  As diffusion
is a random process we expect to see a smooth attenuation of the intensity of
the refocused signal as the diffusion contribution increases.  These effects
have been known and exploited to measure diffusion constants since the
very earliest days of NMR.

                                                
† There is an error in this paper: in Fig. 1(b) the penultimate S spin 90° pulse should be

phase y and the final S spin 90° pulse is not required.
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The effect of diffusion on the signal intensity from the simple echo
sequence shown opposite is relatively simple to analyse and captures all of
the essential points.  Note that the two gradient pulses can be placed
anywhere in the intervals δ either side of the 180° pulse.  For a single
uncoupled resonance, the intensity of the observed signal, S, expressed as a
fraction of the signal intensity in the absence of a gradient, S0 is given by

S

S
G D

0

2 2 2

3
= − −











exp γ τ τ∆ [15]

where D is the diffusion constant, ∆ is the time between the start of the two
gradient pulses and τ is the duration of the gradient pulses; relaxation has
been ignored.  For a given pair of gradient pulses it is diffusion during the
interval between the two pulses, ∆, which determines the attenuation of the
echo.  The stronger the gradient the more rapidly the phase varies across the
sample and thus the more rapidly the echo will be attenuated.  This is the
physical interpretation of the term γ τ2 2 2G  in Eqn. [15].

Diffusion constants generally decrease as the molecular mass increases.
A small molecule, such as water, will diffuse up to twenty times faster than
a protein with molecular weight 20,000.  The table shows the loss in
intensity due to diffusion for typical gradient pulse pair of 2 ms duration and
of strength 10 G cm–1 for a small, medium and large sized molecule; data is
given for ∆ = 2 ms and ∆ = 100 ms.  It is seen that even for the most rapidly
diffusing molecules the loss of intensity is rather small for ∆ = 2 ms, but
becomes significant for longer delays.  For large molecules, the effect is
small in all cases.

Fraction of transverse magnetization refocused after a spin echo with gradient refocusinga

∆/ms small moleculeb medium sized moleculec macro moleculed

2 0.99 1.00 1.00

100 0.55 0.88 0.97

a Calculated for the pulse sequence shown above for two gradients of strength 10 G cm–1

and duration, τ, 2 ms; relaxation is ignored.  b Diffusion constant, D, taken as that for water,
which is 2.1 × 10–9 m2 s–1 at ambient temperatures.  c Diffusion constant taken as 0.46 × 10–9

m2 s–1.  d Diffusion constant taken as 0.12 × 10–9 m2 s–1.

9.5.6.1 Minimisation of Diffusion Losses

The foregoing discussion makes it clear that in order to minimise intensity
losses due to diffusion the product of the strength and durations of the
gradient pulses, G2 2τ , should be kept as small as is consistent with
achieving the required level of suppression.  In addition, a gradient pulse
pair should be separated by the shortest time, ∆, within the limits imposed
by the pulse sequence.  This condition applies to gradient pairs the first of
which is responsible for dephasing, and the second for rephasing.  Once the
coherence is rephased the time that elapses before further gradient pairs is
irrelevant from the point of view of diffusion losses.

RF

g τ τ
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In two-dimensional NMR, diffusion can lead to line broadening in the F1

dimension if t1 intervenes between a gradient pair.  Consider the two
alternative pulse sequences for recording a simple COSY spectrum shown
opposite.  In (a) the gradient pair are separated by the very short time of the
final pulse, thus keeping the diffusion induced losses to an absolute
minimum.  In (b) the two gradients are separated by the incrementable time
t1; as this increases the losses due to diffusion will also increase, resulting in
an extra decay of the signal in t1.  The extra line broadening due to this
decay can be estimated from Eqn. [15], with ∆ = t1, as γ τ π2 2 2G D  Hz.  For
a pair of 2 ms gradients of strength 10 G cm–1 this amounts ≈ 2 Hz in the
case of a small molecule.

This effect by which diffusion causes an extra line broadening in the F1

dimension is usually described as diffusion weighting.  Generally it is
possible to avoid it by careful placing of the gradients.  For example, the
sequences (a) and (b) are in every other respect equivalent, thus there is no
reason not to chose (a).  It should be emphasised that diffusion weighting
occurs only when t1 intervenes between the dephasing and refocusing
gradients.

9.5.7 Some examples of gradient selection

9.5.7.1 Introduction

Reference has already been made to the two general advantages of using
gradient pulses for coherence selection, namely the possibility of a general
improvement in the quality of spectra and the removal of the requirement of
completing a phase cycle for each increment of a multi-dimensional
experiment.  This latter point is particularly significant when dealing with
three- and four-dimensional experiments.

The use of gradients results in very significant improvement in the
quality of proton-detected heteronuclear experiments, especially when
unlabelled samples are used.  In such experiments, gradient selection results
in much lower dynamic range in the free induction decay as compared to
phase cycled experiments.

As has been discussed above, special care needs to be taken in
experiments which use gradient selection in order to retain absorption mode
lineshapes.

In the following sections the use of gradient selection in several different
experiments will be described.  The gradient pulses used in these sequences
will be denoted G1, G2 etc. where Gi implies a gradient of duration τi,
strength Bg,i and shape factor si.  There is always the choice of altering the
duration, strength or, conceivably, shape factor in order to establish
refocusing.  Thus, for brevity we shall from now on write the spatially
dependent phase produced by gradient Gi acting on coherence of order p as
γpGi  in the homonuclear case or

γ j j i
j

p G∑
in the heteronuclear case; the sum is over all types of nucleus.
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9.5.7.2 Double-quantum Filtered COSY
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This experiment has already been discussed in detail in previous sections;
sequence (a) is essentially that described already and is suitable for
recording absorption mode spectra.  The refocusing condition is G2 = 2G1;
frequency discrimination in the F1 dimension is achieved by the SHR or
TPPI procedures.  Multiple quantum filters through higher orders can be
implemented in the same manner.

In sequence (b) the final spin echo is not required as data acquisition is
started immediately after the final radiofrequency pulse; phase errors which
would accumulate during the second gradient pulse are thus avoided.  Of
course, the signal only rephases towards the end of the final gradient, so
there is little signal to be observed.  However, the crucial point is that, as the
magnetization is all in antiphase at the start of t2, the signal grows from zero
at a rate determined by the size the couplings on the spectrum.  Provided
that the gradient pulse is much shorter that 1/J, where J is a typical proton-
proton coupling constant, the part of the signal missed during the gradient
pulse is not significant and the spectrum is not perturbed greatly.  An
alternative procedure is to start to acquire the data after the final gradient,
and then to right shift the free induction decay, bringing in zeroes from the
left, by a time equal to the duration of the gradient.

9.5.7.3 HMQC
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There are several ways of implementing gradient selection into the HMQC
experiment, one of which, which leads to absorption mode spectra, is shown
above.  The centrally placed I spin 180° pulse results in no net dephasing of
the I spin part of the heteronuclear multiple quantum coherence by the two
gradients G1 i.e. the dephasing of the I spin coherence caused by the first is
undone by the second.  However, the S spin coherence experiences a net
dephasing due to these two gradients and this coherence is subsequently



9–44

refocused by G2.  Two 180° S spin pulses together with the delays τ1 refocus
shift evolution during the two gradients G1.  The centrally placed 180° I spin
pulse refocuses chemical shift evolution of the I spins during the delays ∆
and all of the gradient pulses (the last gradient is contained within the final
delay, ∆).  The refocusing condition is

  m2 01 2γ γs IG G− =

where the + and – signs refer to the P- and N-type spectra respectively.  The
switch between recording these two types of spectra is made simply by
reversing the sense of G 2.  The P- and N-type spectra are recorded
separately and then combined in the manner described in section 9.3.4.2 to
give a frequency discriminated absorption mode spectrum.

In the case that I and S are proton and carbon-13 respectively, the
gradients G1 and G2 are in the ratio 2:±1.  Proton magnetization not involved
in heteronuclear multiple quantum coherence, i.e. magnetization from
protons not coupled to carbon-13, is refocused after the second gradient G1

but is then dephased by the final gradient G2.  Provided that the gradient is
strong enough these unwanted signals, and the t1-noise associated with
them, will be suppressed.

9.5.7.4 HSQC
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The sequence above shows the simplest way of implementing gradients into
the HSQC experiment.  An analysis using product operators shows that at
point a the required signal is present as the operator 2IzSz whereas the
undesired signal (from I spins not coupled to S spins) is present as Iy.  Thus,
a field gradient applied at point a will dephase the unwanted magnetization
and leave the wanted term unaffected.  This is an example of using gradients
not for selection, but for suppression of unwanted magnetization (see
section 9.5.3.2).

The main practical difficulty with this approach is that the unwanted
magnetization is only along y at point a provided all of the pulses are
perfect; if the pulses are imperfect there will be some z-magnetization
present which will not be eliminated by the gradient.  In the case of
observing proton-13C or proton-15N HSQC spectra from natural abundance
samples, the magnetization from uncoupled protons is very much larger
than the wanted magnetization, so even very small imperfections in the
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pulses can give rise to unacceptably large residual signals.  However, for
globally labelled samples the degree of suppression is often sufficient and
such an approach is used successfully in many three- and four-dimensional
experiments applied to globally 13C and 15N labelled proteins.

The key to obtaining the best suppression of the uncoupled magnetization
is to apply a gradient when transverse magnetization is present on the S
spin.  An example of the HSQC experiment utilising such a principle is
shown below
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HSQC pulse sequence with gradient selection.  The CTP for an N-type spectrum is shown by the full
line and for the P-type spectrum by the dashed line.

Here, G1 dephases the S spin magnetization present at the end of t1 and, after
transfer to the I spins, G2 refocuses the signal.  An extra 180° pulse to S in
conjunction with the extra delay τ1 ensures that phase errors which
accumulate during G1 are refocused; G2 is contained within the final spin
echo which is part of the usual HSQC sequence.  The refocusing condition
is

  mγ γS IG G1 2 0− =

where the –  and + signs refer to the N- and P-type spectra respectively.  As
before, an absorption mode spectrum is obtained by combining the N- and
P-type spectra, which can be selected simply by reversing the sense of G2.

9.6 Zero-quantum dephasing and purge pulses

Both z-magnetization and homonuclear zero-quantum coherence have
coherence order 0, and thus neither are dephased by the application of a
gradient pulse.  Selection of coherence order zero is achieved simply by
applying a gradient pulse which is long enough to dephase all other
coherences; no refocusing is used.  In the vast majority of experiments it is
the z-magnetization which is required and the zero-quantum coherence that
is selected at the same time is something of a nuisance.

A number of methods have been developed to suppress contributions to
the spectrum from zero-quantum coherence.  Most of these utilise the
property that zero-quantum coherence evolves in time, whereas z-
magnetization does not.  Thus, if several experiments in which the zero-
quantum has been allowed to evolve for different times are co-added,
cancellation of zero-quantum contributions to the spectrum will occur.  Like
phase cycling, such a method is time consuming and relies on a difference
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procedure.  However, it has been shown that if a field gradient is combined
with a period of spin-locking the coherences which give rise to these zero-
quantum coherences can be dephased.  Such a process is conveniently
considered as a modified purging pulse.

9.6.1 Purging pulses

A purging pulse consists of a relatively long period of spin-locking, taken
here to be applied along the x-axis.  Magnetization not aligned along x will
precess about the spin-locking field and, because this field is inevitably
inhomogeneous, such magnetization will dephase.  The effect is thus to
purge all magnetization except that aligned along x.  However, in a coupled
spin system certain anti-phase states aligned perpendicular to the spin-lock
axis are also preserved.  For a two spin system (with spins k and l), the
operators preserved under spin-locking are Ikx, Ilx and the anti-phase state
2 2I I I Iky lz kz ly− .  Thus, in a coupled spin system, the purging effect of the
spin-locking pulse is less than perfect.

The reason why these anti-phase terms are preserved can best be seen by
transforming to a tilted co-ordinate system whose z-axis is aligned with the
effective field seen by each spin.  For the case of a strong B1 field placed
close to resonance the effective field seen by each spin is along x, and so the
operators are transformed to the tilted frame simply by rotating them by
–90° about y
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Operators in the tilted frame are denoted with a superscript T.  In this frame
the x-magnetization has become z, and as this is parallel with the effective
field, it clearly does not dephase.  The anti-phase magnetization along y has
become

2 2I I I Iky lx kx ly
T T T T−

which is recognised as zero-quantum coherence in the tilted frame.  Like
zero-quantum coherence in the normal frame, this coherence does not
dephase in a strong spin-locking field.  There is thus a connection between
the inability of a field gradient to dephase zero-quantum coherence and the
preservation of certain anti-phase terms during a purging pulse.

Zero-quantum coherence in the tilted frame evolves with time at a
frequency, ΩZQ

T , given by
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where Ωi is the offset from the transmitter of spin i and ω1 is the B1 field
strength.  If a field gradient is applied during the spin-locking period the
zero quantum frequency is modified to
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This frequency can, under certain circumstances, become spatially
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dependent and thus the zero-quantum coherence in the tilted frame will
dephase.  This is in contrast to the case of zero-quantum coherence in the
laboratory frame which is not dephased by a gradient pulse.

The principles of this dephasing procedure are discussed in detail
elsewhere (J. Magn. Reson. Ser. A 105, 167-183 (1993) ).  Here, we note the
following features.   (a) The optimum dephasing is obtained when the extra
offset induced by the gradient at the edges of the sample, γBg(rmax), is of the
order of ω1.  (b) The rate of dephasing is proportional to the zero-quantum
frequency in the absence of a gradient, (Ωk – Ωl).  (c) The gradient must be
switched on and off adiabatically.  (d) The zero-quantum coherences may
also be dephased using the inherent inhomogeneity of the radio-frequency
field produced by typical NMR probes, but in such a case the optimum
dephasing rate is obtained by spin locking off-resonance so that

tan–
,

1
1 54ω Ωk l( ) ≈ °.

(e)  Dephasing in an inhomogeneous B1 field can be accelerated by the use
of special composite pulse sequences.

The combination of spin-locking with a gradient pulse allows the
implementation of essentially perfect purging pulses.  Such a pulse could be
used in a two-dimensional TOCSY experiment whose pulse sequence is
shown below as (a).

t1 τm

g
GAGA GA G2

y

t2t1
t2

DIPSI
(a) (b)

Pulse sequences using purging pulses which comprise a period of spin locking with a magnetic field
gradient.  The field gradient must be switched on and off in an adiabatic manner.

In this experiment, the period of isotropic mixing transfers in-phase
magnetization (say along x) between coupled spins, giving rise to cross-
peaks which are absorptive and in-phase in both dimensions.  However, the
mixing sequence also both transfers and generates anti-phase magnetization
along y, which gives rise to undesirable dispersive anti-phase contributions
in the spectrum.  In sequence (a) these anti-phase contributions are
eliminated by the use of a purging pulse as described here.  Of course, at the
same time all magnetization other than x is also eliminated, giving a near
perfect TOCSY spectrum without the need for phase cycling or other
difference measures.

These purging pulses can be used to generate pure z-magnetization
without contamination from zero-quantum coherence by following them
with a 90°(y) pulse, as is shown in the NOESY sequence (b).  Zero-quantum
coherences present during the mixing time of a NOESY experiment give
rise to troublesome dispersive contributions in the spectra, which can be
eliminated by the use of this sequence.


