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7 Two-dimensional NMR†

7.1 Introduction

The basic ideas of two-dimensional NMR will be introduced by reference to
the appearance of a COSY spectrum; later in this chapter the product
operator formalism will be used to predict the form of the spectrum.

Conventional NMR spectra (one-dimensional spectra) are plots of
intensity vs. frequency; in two-dimensional spectroscopy intensity is plotted
as a function of two frequencies, usually called F1 and F2.  There are various
ways of representing such a spectrum on paper, but the one most usually
used is to make a contour plot in which the intensity of the peaks is
represented by contour lines drawn at suitable intervals, in the same way as
a topographical map.  The position of each peak is specified by two
frequency co-ordinates corresponding to F1 and F2.  Two-dimensional NMR
spectra are always arranged so that the F 2 co-ordinates of the peaks
correspond to those found in the normal one-dimensional spectrum, and this
relation is often emphasized by plotting the one-dimensional spectrum
alongside the F2 axis.

The figure shows a schematic COSY spectrum of a hypothetical
molecule containing just two protons, A and X, which are coupled together.
The one-dimensional spectrum is plotted alongside the F2 axis, and consists
of the familiar pair of doublets centred on the chemical shifts of A and X, δA

and δX respectively.  In the COSY spectrum, the F1 co-ordinates of the
peaks in the two-dimensional spectrum also correspond to those found in
the normal one-dimensional spectrum and to emphasize this point the one-
dimensional spectrum has been plotted alongside the F1 axis.  It is
immediately clear that this COSY spectrum has some symmetry about the
diagonal F1 = F2 which has been indicated with a dashed line.

In a one-dimensional spectrum scalar couplings give rise to multiplets in
the spectrum.  In two-dimensional spectra the idea of a multiplet has to be
expanded somewhat so that in such spectra a multiplet consists of an array
of individual peaks often giving the impression of a square or rectangular
outline.  Several such arrays of peaks can be seen in the schematic COSY
spectrum shown above.  These two-dimensional multiplets come in two
distinct types: diagonal-peak multiplets which are centred around the same
F1 and F2 frequency co-ordinates and cross-peak multiplets which are
centred around different F1 and F 2 co-ordinates.  Thus in the schematic
COSY spectrum there are two diagonal-peak multiplets centred at F1 = F2 =
δA and F1 = F2 = δX, one cross-peak multiplet centred at F1 = δA, F2 = δX and
a second cross-peak multiplet centred at F1 = δX, F2 = δA.

The appearance in a COSY spectrum of a cross-peak multiplet F1 = δA, F2

= δX indicates that the two protons at shifts δA and δX have a scalar coupling
between them.  This statement is all that is required for the analysis of a
COSY spectrum, and it is this simplicity which is the key to the great utility
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of such spectra.  From a single COSY spectrum it is possible to trace out the
whole coupling network in the molecule

7.1.1 General Scheme for Two-Dimensional NMR

In one-dimensional pulsed Fourier transform NMR the signal is recorded as
a function of one time variable and then Fourier transformed to give a
spectrum which is a function of one frequency variable.  In two-dimensional
NMR the signal is recorded as a function of two time variables, t1 and t2, and
the resulting data Fourier transformed twice to yield a spectrum which is a
function of two frequency variables.  The general scheme for two-
dimensional spectroscopy is

evolution detection

t1 t2
mixingpreparation

In the first period, called the preparation time, the sample is excited by
one or more pulses.  The resulting magnetization is allowed to evolve for
the first time period, t1.  Then another period follows, called the mixing
time, which consists of a further pulse or pulses.  After the mixing period
the signal is recorded as a function of the second time variable, t2.  This
sequence of events is called a pulse sequence and the exact nature of the
preparation and mixing periods determines the information found in the
spectrum.

It is important to realize that the signal is not recorded during the time t1,
but only during the time t2 at the end of the sequence.  The data is recorded
at regularly spaced intervals in both t1 and t2.

The two-dimensional signal is recorded in the following way.  First, t1 is
set to zero, the pulse sequence is executed and the resulting free induction
decay recorded.  Then the nuclear spins are allowed to return to equilibrium.
t1 is then set to ∆1, the sampling interval in t1, the sequence is repeated and a
free induction decay is recorded and stored separately from the first.  Again
the spins are allowed to equilibrate, t1 is set to 2∆1, the pulse sequence
repeated and a free induction decay recorded and stored.  The whole process
is repeated again for t1 = 3∆1, 4∆1 and so on until sufficient data is recorded,
typically 50 to 500 increments of t1.  Thus recording a two-dimensional data
set involves repeating a pulse sequence for increasing values of t1 and
recording a free induction decay as a function of t2 for each value of t1.

7.1.2 Interpretation of peaks in a two-dimensional spectrum

Within the general framework outlined in the previous section it is now
possible to interpret the appearance of a peak in a two-dimensional
spectrum at particular frequency co-ordinates.
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Suppose that in some unspecified two-dimensional spectrum a peak appears
at F1 = 20 Hz, F2 = 80 Hz (spectrum a above)  The interpretation of this
peak is that a signal was present during t1 which evolved with a frequency
of 20 Hz.  During the mixing time this same signal was transferred in some
way to another signal which evolved at 80 Hz during t2.

Likewise, if there is a peak at F1 = 20 Hz, F2 = 20 Hz (spectrum b) the
interpretation is that there was a signal evolving at 20 Hz during t1 which
was unaffected by the mixing period and continued to evolve at 20 Hz
during t2.  The processes by which these signals are transferred will be
discussed in the following sections.

Finally, consider the spectrum shown in c.  Here there are two peaks, one
at F1 = 20 Hz, F2 = 80 Hz and one at F 1 = 20 Hz, F2 = 20 Hz.  The
interpretation of this is that some signal was present during t1 which evolved
at 20 Hz and that during the mixing period part of it was transferred into
another signal which evolved at 80 Hz during t2.  The other part remained
unaffected and continued to evolve at 20 Hz.  On the basis of the previous
discussion of COSY spectra, the part that changes frequency during the
mixing time is recognized as leading to a cross-peak and the part that does
not change frequency leads to a diagonal-peak.  This kind of interpretation
is a very useful way of thinking about the origin of peaks in a two-
dimensional spectrum.

It is clear from the discussion in this section that the mixing time plays a
crucial role in forming the two-dimensional spectrum.  In the absence of a
mixing time, the frequencies that evolve during t1 and t2 would be the same
and only diagonal-peaks would appear in the spectrum.  To obtain an
interesting and useful spectrum it is essential to arrange for some process
during the mixing time to transfer signals from one spin to another.

7.2 EXSY and NOESY spectra in detail

In this section the way in which the EXSY (EXchange SpectroscopY)
sequence works will be examined; the pulse sequence is shown opposite.
This experiment gives a spectrum in which a cross-peak at frequency co-
ordinates F1 = δA , F2 = δB indicates that the spin resonating at δA is
chemically exchanging with the spin resonating at δB.

The pulse sequence for EXSY is shown opposite.  The effect of the
sequence will be analysed for the case of two spins, 1 and 2, but without any
coupling between them.  The initial state, before the first pulse, is
equilibrium magnetization, represented as I1z + I2z; however, for simplicity
only magnetization from the first spin will be considered in the calculation.

The first 90° pulse (of phase x) rotates the magnetization onto –y

I Iz
I I

y
x x

1
2 2

1
1 2π π →  → −

(the second arrow has no effect as it involves operators of spin 2).  Next
follows evolution for time t1

−  →  → − +I t I t Iy
t I t I

y x
z z

1 1 1 1 1 1 1
1 1 1 2 1 2Ω Ω Ω Ωcos sin

again, the second arrow has no effect.  The second 90° pulse turns the first

t1
t2τmix

The pulse sequence for EXSY
(and NOESY).  All pulses have
90° flip angles.
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term onto the z-axis and leaves the second term unaffected

−  →  → −

 →  →

cos cos

sin sin

Ω Ω

Ω Ω
1 1 1

2 2
1 1 1

1 1 1
2 2

1 1 1

1 2

1 2

t I t I

t I t I

y
I I

z

x
I I

x

x x

x x

π π

π π

Only the I1z term leads to cross-peaks by chemical exchange, so the other
term will be ignored (in an experiment this is achieved by appropriate
coherence pathway selection).  The effect of the first part of the sequence is
to generate, at the start of the mixing time, τmix, some z-magnetization on
spin 1 whose size depends, via the cosine term, on t1 and the frequency, Ω1,
with which the spin 1 evolves during t1.  The magnetization is said to be
frequency labelled.

During the mixing time, τmix, spin 1 may undergo chemical exchange
with spin 2.  If it does this, it carries with it the frequency label that it
acquired during t1.  The extent to which this transfer takes place depends on
the details of the chemical kinetics; it will be assumed simply that during
τmix a fraction f of the spins of type 1 chemically exchange with spins of type
2.  The effect of the mixing process can then be written

−  → − −( ) −cos cos cosΩ Ω Ω1 1 1 1 1 1 1 1 21t I f t I f t Iz z z
mixing

The final 90° pulse rotates this z-magnetization back onto the y-axis

− −( )  →  → −( )
−  →  →

1 11 1 1
2 2

1 1 1

1 1 2
2 2

1 1 2

1 2

1 2

f t I f t I

f t I f t I

z
I I

y

z
I I

y

x x

x x

cos cos

cos cos

Ω Ω

Ω Ω

π π

π π

Although the magnetization started on spin 1, at the end of the sequence
there is magnetization present on spin 2 – a process called magnetization
transfer.  The analysis of the experiment is completed by allowing the I1y

and I2y operators to evolve for time t2.

1

1 1

1 1 1

1 2 1 1 1 1 2 1 1 1

1 1 2

2 2 1 1 2

1 2 1 2 2 2

1 2 1 2 2 2

−( )  →  →

−( ) − −( )
 →  →

f t I

f t t I f t t I

f t I

f t t I

y
t I t I

y x

y
t I t I

z z

z z

cos

cos cos sin cos

cos

cos cos

Ω

Ω Ω Ω Ω

Ω
Ω Ω

Ω Ω

Ω Ω

yy xf t t I− sin cosΩ Ω2 2 1 1 2

If it is assumed that the y-magnetization is detected during t2 (this is an
arbitrary choice, but a convenient one), the time domain signal has two
terms:

1 1 2 1 1 2 2 1 1−( ) +f t t f t tcos cos cos cosΩ Ω Ω Ω
The crucial thing is that the amplitude of the signal recorded during t2 is

modulated by the evolution during t1.  This can be seen more clearly by
imagining the Fourier transform, with respect to t2, of the above function.
The cosΩ1 2t  and cosΩ2 2t  terms transform to give absorption mode signals
centred at Ω1 and Ω2 respectively in the F2 dimension; these are denoted
A1

2( ) and A2
2( ) (the subscript indicates which spin, and the superscript which

dimension).  The time domain function becomes

1 1
2

1 1 2
2

1 1−( ) +( ) ( )f A t fA tcos cosΩ Ω
If a series of spectra recorded as t1 progressively increases are inspected it
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would be found that the cosΩ1 2t  term causes a change in size of the peaks
at Ω1 and Ω2 – this is the modulation referred to above.

Fourier transformation with respect to t1 gives peaks with an absorption
lineshape, but this time in the F1 dimension; an absorption mode signal at
Ω1 in F1 is denoted A1

1( ).  The time domain signal becomes, after Fourier
transformation in each dimension

1 1
2

1
1

2
2

1
1−( ) +( ) ( ) ( ) ( )f A A fA A

Thus, the final two-dimensional spectrum is predicted to have two peaks.
One is at (F1, F2) = (Ω1, Ω1) – this is a diagonal peak and arises from those
spins of type 1 which did not undergo chemical exchange during τmix.  The
second is at (F1, F2) = (Ω1, Ω2) – this is a cross peak which indicates that
part of the magnetization from spin 1 was transferred to spin 2 during the
mixing time.  It is this peak that contains the useful information.  If the
calculation were repeated starting with magnetization on spin 2 it would be
found that there are similar peaks at (Ω2, Ω2) and (Ω2, Ω1).

The NOESY (Nuclear Overhauser Effect SpectrocopY) spectrum is
recorded using the same basic sequence.  The only difference is that during
the mixing time the cross-relaxation is responsible for the exchange of
magnetization between different spins.  Thus, a cross-peak indicates that
two spins are experiencing mutual cross-relaxation and hence are close in
space.

Having completed the analysis it can now be seen how the
EXCSY/NOESY sequence is put together.  First, the 90° – t1 – 90° sequence
is used to generate frequency labelled z-magnetization.  Then, during τmix,
this magnetization is allowed to migrate to other spins, carrying its label
with it.  Finally, the last pulse renders the z-magnetization observable.

7.3 More about two-dimensional transforms

From the above analysis it was seen that the signal observed during t2 has
an amplitude proportional to cos(Ω1t1); the amplitude of the signal observed
during t2 depends on the evolution during t1.  For the first increment of t1 (t1

= 0), the signal will be a maximum, the second increment will have size
proportional to cos(Ω1∆1), the third proportional to cos(Ω12∆1), the fourth to
cos(Ω13∆1) and so on.  This modulation of the amplitude of the observed
signal by the t1 evolution is illustrated in the figure below.

In the figure the first column shows a series of free induction decays that
would be recorded for increasing values of t1 and the second column shows
the Fourier transforms of these signals.  The final step in constructing the
two-dimensional spectrum is to Fourier transform the data along the t1

dimension.  This process is also illustrated in the figure.  Each of the spectra
shown in the second column are represented as a series of data points, where
each point corresponds to a different F 2 frequency.  The data point
corresponding to a particular F2 frequency is selected from the spectra for t1

= 0, t1 = ∆1, t1 = 2∆1 and so on for all the t1 values.  Such a process results in
a function, called an interferogram, which has t1 as the running variable.

time

frequency
Ω

Fourier transform

The Fourier transform of a
decaying cosine function
cosΩt exp(–t/T2)  i s  an
absorption mode Lorentzian
centred at frequency Ω; the real
part of the spectrum has been
plotted.
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Illustration of how the modulation of a free induction decay by evolution during t1 gives rise to a peak in
the two-dimensional spectrum.  In the left most column is shown a series of free induction decays that
would be recorded for successive values of t1; t1 increases down the page.  Note how the amplitude of
these free induction decays varies with t1, something that becomes even plainer when the time domain
signals are Fourier transformed, as shown in the second column.  In practice, each of these F2 spectra
in column two consist of a series of data points.  The data point at the same frequency in each of these
spectra is extracted and assembled into an interferogram, in which the horizontal axis is the time t1.
Several such interferograms, labelled a to g, are shown in the third column.  Note that as there were
eight F2 spectra in column two corresponding to different t1 values there are eight points in each
interferogram.  The F2 frequencies at which the interferograms are taken are indicated on the lower
spectrum of the second column.  Finally, a second Fourier transformation of these interferograms gives
a series of F1 spectra shown in the right hand column.  Note that in this column F2 increases down the
page, whereas in the first column t1 increase down the page.  The final result is a two-dimensional
spectrum containing a single peak.

Several interferograms, labelled a  to g , computed for different F2

frequencies are shown in the third column of the figure.  The particular F2

frequency that each interferogram corresponds to is indicated in the bottom
spectrum of the second column.  The amplitude of the signal in each
interferogram is different, but in this case the modulation frequency is the
same.  The final stage in the processing is to Fourier transform these
interferograms to give the series of spectra which are shown in the right
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most column of the figure.  These spectra have F1 running horizontally and
F2 running down the page.  The modulation of the time domain signal has
been transformed into a single two-dimensional peak.  Note that the peak
appears on several traces corresponding to different F2 frequencies because
of the width of the line in F2.

The time domain data in the t1 dimension can be manipulated by
multiplying by weighting functions or zero filling, just as with conventional
free induction decays.

7.4 Two-dimensional experiments using coherence transfer
through J-coupling

Perhaps the most important set of two-dimensional experiments are those
which transfer magnetization from one spin to another via the scalar
coupling between them.  As was seen in section 6.3.3, this kind of transfer
can be brought about by the action of a pulse on an anti-phase state.  In
outline the basic process is

I I I I Ix y z
x

z y1 1 2 1 22 2coupling 90 ( ) to both spins

                     spin 1 spin 2

 →  →°

7.4.1 COSY

The pulse sequence for this experiment is shown opposite.  It will be
assumed in the analysis that all of the pulses are applied about the x-axis and
for simplicity the calculation will start with equilibrium magnetization only
on spin 1.  The effect of the first pulse is to generate y-magnetization, as has
been worked out previously many times

I Iz
I I

y
x x

1
2 2

1
1 2π π →  → −

This state then evolves for time t1, first under the influence of the offset of
spin 1 (that of spin 2 has no effect on spin 1 operators):

−  → − +I t I t Iy
t I

y x
z

1 1 1 1 1 1 1
1 1 1Ω Ω Ωcos sin

Both terms on the right then evolve under the coupling

−  → − +

 → +

cos cos cos sin cos

sin cos sin sin sin

Ω Ω Ω

Ω Ω Ω
1 1 1

2
12 1 1 1 1 12 1 1 1 1 2

1 1 1
2

12 1 1 1 1 12 1 1 1 1

12 1 1 2

12 1 1 2

2

2

t I J t t I J t t I I

t I J t t I J t t I I

y
J t I I

y x z

x
J t I I

x y

z z

z z

π

π

π π

π π 22z

That completes the evolution under t1.  Now all that remains is to consider
the effect of the final pulse, remembering that the effect of the pulse on both
spins needs to be computed.  Taking the terms one by one:

t1
t2

Pulse sequence for the two-
dimensional COSY experiment
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−  →  → − { }
 →  → − { }

cos cos cos cos

sin cos sin cos

cos sin

π π

π π

π

π π

π π

J t t I J t t I

J t t I I J t t I I

J t

y
I I

z

x z
I I

x y

x x

x x

12 1 1 1 1
2 2

12 1 1 1 1

12 1 1 1 1 2
2 2

12 1 1 1 1 2

12 1

1 2

1 2

1

2 2 2

Ω Ω

Ω Ω

ΩΩ Ω

Ω Ω
1 1 1

2 2
12 1 1 1 1

12 1 1 1 1 2
2 2

12 1 1 1 1 2

1 2

1 2

3

2 2 4

t I J t t I

J t t I I J t t I I

x
I I

x

y z
I I

z y

x x

x x

π π

π π

π

π π

 →  → { }
 →  → − { }

cos sin

sin sin sin sin

Terms {1} and {2} are unobservable.  Term {3} corresponds to in-phase
magnetization of spin 1, aligned along the x-axis.  The t1 modulation of this
term depends on the offset of spin 1, so a diagonal peak centred at (Ω1,Ω1) is
predicted.  Term {4} is the really interesting one.  It shows that anti-phase
magnetization on spin 1, 2 1 2I Iy z , is transferred to anti-phase magnetization
on spin 2, 2 1 2I Iz y ; this is an example of coherence transfer.  Term {4}
appears as observable magnetization on spin 2, but it is modulated in t1 with
the offset of spin 1, thus it gives rise to a cross-peak centred at (Ω1,Ω2).  It
has been shown, therefore, how cross- and diagonal-peaks arise in a COSY
spectrum.

Some more consideration should be give to the form of the cross- and
diagonal peaks.  Consider again term {3}: it will give rise to an in-phase
multiplet in F2, and as it is along the x-axis, the lineshape will be dispersive.
The form of the modulation in t1 can be expanded, using the formula,
cos sin sin sinA B B A B A= +( ) + −( ){ }1

2 to give

cos sin sin sinπ π πJ t t t J t t J t12 1 1 1
1
2 1 1 12 1 1 1 12Ω Ω Ω= +( ) + −( ){ }

Two peaks in F1 are expected at Ω1 12± πJ , these are just the two lines of the
spin 1 doublet.  In addition, since these are sine modulated they will have
the dispersion lineshape.  Note that both components in the spin 1 multiplet
observed in F2 are modulated in this way, so the appearance of the two-
dimensional multiplet can best be found by "multiplying together" the
multiplets in the two dimensions, as shown opposite. In addition, all four
components of the diagonal-peak multiplet have the same sign, and have the
double dispersion lineshape illustrated below

The double dispersion lineshape seen in pseudo 3D and as a contour plot; negative contours are
indicated by dashed lines.

Term {4} can be treated in the same way.  In F2 we know that this term
gives rise to an anti-phase absorption multiplet on spin 2.  Using the
relationship sin sin cos cosB A B A B A= − +( ) + −( ){ }1

2  the modulation in t1

can be expanded

sin sin cos cosπ π πJ t t t J t t J t12 1 1
1
2 1 1 12 1 1 1 12Ω Ω Ω= − +( ) + −( ){ }

time

frequency

Ω

Fourier transform

The Fourier transform of a
decaying s ine funct ion
sinΩt exp(–t/T2) is a dispersion
mode Lorentzian centred at
frequency Ω.

F1

J12

F2

J12

Schematic view of the diagonal
peak from a COSY spectrum.
The squares are supposed to
indicate the two-dimensional
double dispersion lineshape
illustrated below
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Two peaks in F1, at Ω1 12± πJ , are expected; these are just the two lines of
the spin 1 doublet.  Note that the two peaks have opposite signs – that is
they are anti-phase in F1.  In addition, since these are cosine modulated we
expect the absorption lineshape (see section 7.2).  The form of the cross-
peak multiplet can be predicted by "multiplying together" the F1 and F 2

multiplets, just as was done for the diagonal-peak multiplet.  The result is
shown opposite.  This characteristic pattern of positive and negative peaks
that constitutes the cross-peak is know as an anti-phase square array.

The double absorption lineshape seen in pseudo 3D and as a contour plot.

COSY spectra are sometimes plotted in the absolute value mode, where
all the sign information is suppressed deliberately.  Although such a display
is convenient, especially for routine applications, it is generally much more
desirable to retain the sign information.  Spectra displayed in this way are
said to be phase sensitive; more details of this are given in section 7.6.

As the coupling constant becomes comparable with the linewidth, the
positive and negative peaks in the cross-peak multiplet begin to overlap and
cancel one another out.  This leads to an overall reduction in the intensity of
the cross-peak multiplet, and ultimately the cross-peak disappears into the
noise in the spectrum.  The smallest coupling which gives rise to a cross-
peak is thus set by the linewidth and the signal-to-noise ratio of the
spectrum.

7.1.2 Double-quantum filtered COSY (DQF COSY)

The conventional COSY experiment suffers from a disadvantage which
arises from the different phase properties of the cross- and diagonal-peak
multiplets.  The components of a diagonal peak multiplet are all in-phase
and so tend to reinforce one another.  In addition, the dispersive tails of
these peaks spread far into the spectrum.  The result is a broad intense
diagonal which can obscure nearby cross-peaks.  This effect is particularly
troublesome when the coupling is comparable with the linewidth as in such
cases, as was described above, cancellation of anti-phase components in the
cross-peak multiplet reduces the overall intensity of these multiplets.

This difficulty is neatly side-stepped by a modification called double
quantum filtered COSY (DQF COSY).  The pulse sequence is shown
opposite.

Up to the second pulse the sequence is the same as COSY.  However, it
is arranged that only double-quantum coherence present during the (very
short) delay between the second and third pulses is ultimately allowed to

F1

J12

F2

J12

Schematic view of the cross-
peak multiplet from a COSY
spectrum. The circles are
supposed to indicate the two-
dimensional double absorption
lineshape illustrated below;
filled circles represent positive
intensity, open represent
negative intensity.

t1
t2

The pulse sequence for DQF
COSY; the delay between the
last two pulses is usually just a
few microseconds.
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contribute to the spectrum.  Hence the name, "double-quantum filtered", as
all the observed signals are filtered through double-quantum coherence.
The final pulse is needed to convert the double quantum coherence back
into observable magnetization.  This double-quantum derived signal is
selected by the use of coherence pathway selection using phase cycling or
field gradient pulses.

In the analysis of the COSY experiment, it is seen that after the second
90° pulse it is term {2} that contains double-quantum coherence; this can be
demonstrated explicitly by expanding this term in the raising and lowering
operators, as was done in section 6.5

2 21 2
1
2 1 1

1
2 2 2

1
2 1 2 1 2

1
2 1 2 1 2

I I I I I I

I I I I I I I I

x y i

i i

= × +( ) × −( )
= −( ) + − +( )

+ − + −

+ + − − + − − +

This term contains both double- and zero-quantum coherence.  The pure
double-quantum part is the term in the first bracket on the right; this term
can be re-expressed in Cartesian operators:

1
2 1 2 1 2

1
2 1 1 2 2 1 1 2 2

1
2 1 2 1 22 2

i i x y x y x y x y

x y y x

I I I I I iI I iI I iI I iI

I I I I

+ + − −−( ) = +( ) +( ) + −( ) −( )[ ]
= +[ ]

The effect of the last 90°(x) pulse on the double quantum part of term {2} is
thus

− +( )  →  →

− +( )

1
2 12 1 1 1 1 2 1 2

2 2

1
2 12 1 1 1 1 2 1 2

2 2

2 2

1 2sin cos

sin cos

π

π

π πJ t t I I I I

J t t I I I I

x y y x
I I

x z z x

x xΩ

Ω

The first term on the right is anti-phase magnetization of spin 1 aligned
along the x-axis; this gives rise to a diagonal-peak multiplet.  The second
term is anti-phase magnetization of spin 2, again aligned along x; this will
give rise to a cross-peak multiplet.  Both of these terms have the same
modulation in t1, which can be shown, by a similar analysis to that used
above, to lead to an anti-phase multiplet in F1.  As these peaks all have the
same lineshape the overall phase of the spectrum can be adjusted so that
they are all in absorption; see section 7.6 for further details.  In contrast to
the case of a simple COSY experiment both the diagonal- and cross-peak
multiplets are in anti-phase in both dimensions, thus avoiding the strong in-
phase diagonal peaks found in the simple experiment.  The DQF COSY
experiment is the method of choice for tracing out coupling networks in a
molecule.

7.1.3 Heteronuclear correlation experiments

One particularly useful experiment is to record a two-dimensional spectrum
in which the co-ordinate of a peak in one dimension is the chemical shift of
one type of nucleus (e.g. proton) and the co-ordinate in the other dimension
is the chemical shift of another nucleus (e.g. carbon-13) which is coupled to
the first nucleus.  Such spectra are often called shift correlation maps or
shift correlation spectra.

The one-bond coupling between a carbon-13 and the proton directly
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attached to it is relatively constant (around 150 Hz), and much larger than
any of the long-range carbon-13 proton couplings.  By utilizing this large
difference experiments can be devised which give maps of carbon-13 shifts
vs the shifts of directly attached protons.  Such spectra are very useful as
aids to assignment; for example, if the proton spectrum has already been
assigned, simply recording a carbon-13 proton correlation experiment will
give the assignment of all the protonated carbons.

Only one kind of nuclear species can be observed at a time, so there is a
choice as to whether to observe carbon-13 or proton when recording a shift
correlation spectrum.  For two reasons, it is very advantageous from the
sensitivity point of view to record protons.  First, the proton magnetization
is larger than that of carbon-13 because there is a larger separation between
the spin energy levels giving, by the Boltzmann distribution, a greater
population difference.  Second, a given magnetization induces a larger
voltage in the coil the higher the NMR frequency becomes.

Trying to record a carbon-13 proton shift correlation spectrum by proton
observation has one serious difficulty.  Carbon-13 has a natural abundance
of only 1%, thus 99% of the molecules in the sample do not have any
carbon-13 in them and so will not give signals that can be used to correlate
carbon-13 and proton.  The 1% of molecules with carbon-13 will give a
perfectly satisfactory spectrum, but the signals from these resonances will
be swamped by the much stronger signals from non-carbon-13 containing
molecules.  However, these unwanted signals can be suppressed using
coherence selection in a way which will be described below.

7.1.3.1 Heteronuclear multiple-quantum correlation (HMQC)

The pulse sequence for this popular experiment is given opposite.  The
sequence will be analysed for a coupled carbon-13 proton pair, where spin 1
will be the proton and spin 2 the carbon-13.

The analysis will start with equilibrium magnetization on spin 1, I1z.  The
whole analysis can be greatly simplified by noting that the 180° pulse is
exactly midway between the first 90° pulse and the start of data acquisition.
As has been shown in section 6.4, such a sequence forms a spin echo and so
the evolution of the offset of spin 1 over the entire period (t1 + 2∆) is
refocused.  Thus the evolution of the offset of spin 1 can simply be ignored
for the purposes of the calculation.

At the end of the delay ∆  the state of the system is simply due to
evolution of the term –I1y under the influence of the scalar coupling:

− +cos sinπ πJ I J I Iy x z12 1 12 1 22∆ ∆

It will be assumed that ∆ = 1/(2J12), so only the anti-phase term is present.

The second 90° pulse is applied to carbon-13 (spin 2) only

2 21 2
2

1 2
2I I I Ix z

I
x y

xπ → −

This pulse generates a mixture of heteronuclear double- and zero-quantum
coherence, which then evolves during t1.  In principle this term evolves
under the influence of the offsets of spins 1 and 2 and the coupling between
them.   However, it has already been noted that the offset of spin 1 is

1H

13C
t1

∆ ∆
t2

The pulse sequence for HMQC.
Filled rectangles represent 90°
pulses and open rectangles
represent 180° pulses.  The
delay ∆ is set to 1/(2J12).
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refocused by the centrally placed 180° pulse, so it is not necessary to
consider evolution due to this term.  In addition, it can be shown that
multiple-quantum coherence involving spins i and j does not evolve under
the influence of the coupling, Jij, between these two spins.  As a result of
these two simplifications, the only evolution that needs to be considered is
that due to the offset of spin 2 (the carbon-13).

−  → − +2 2 21 2 2 1 1 2 2 1 1 2
2 1 2I I t I I t I Ix y
t I

x y x x
zΩ Ω Ωcos sin

The second 90° pulse to spin 2 (carbon-13) regenerates the first term on the
right into spin 1 (proton) observable magnetization; the other remains
unobservable

−  → −cos cosΩ Ω2 1 1 2
2

2 1 1 22 22t I I t I Ix y
I

x z
xπ

This term then evolves under the coupling, again it is assumed that
∆ = 1/(2J12)

−  → −= ( )cos cos,Ω Ω∆ ∆
2 1 1 2

2 1 2
2 1 12 12 1 2 12t I I t Ix z

J I I J
y

z zπ

This is a very nice result; in F2 there will be an in-phase doublet centred at
the offset of spin 1 (proton) and these two peaks will have an F1 co-ordinate
simply determined by the offset of spin 2 (carbon-13); the peaks will be in
absorption.  A schematic spectrum is shown opposite.

The problem of how to suppress the very strong signals from protons not
coupled to any carbon-13 nuclei now has to be addressed.  From the point of
view of these protons the carbon-13 pulses might as well not even be there,
and the pulse sequence looks like a simple spin echo.  This insensitivity to
the carbon-13 pulses is the key to suppressing the unwanted signals.
Suppose that the phase of the first carbon-13 90° pulse is altered from x to
–x.  Working through the above calculation it is found that the wanted signal
from the protons coupled to carbon-13 changes sign i.e. the observed
spectrum will be inverted.  In contrast the signal from a proton not coupled
to carbon-13 will be unaffected by this change.  Thus, for each t1 increment
the free induction decay is recorded twice: once with the first carbon-13 90°
pulse set to phase x and once with it set to phase –x.  The two free induction
decays are then subtracted in the computer memory thus cancelling the
unwanted signals.  This is an example of a very simple phase cycle.

In the case of carbon-13 and proton the one bond coupling is so much
larger than any of the long range couplings that a choice of ∆ = 1/(2Jone bond)
does not give any correlations other than those through the one-bond
coupling.  There is simply insufficient time for the long-range couplings to
become anti-phase.  However, if ∆ is set to a much longer value (30 to 60
ms), long-range correlations will be seen.  Such spectra are very useful in
assigning the resonances due to quaternary carbon-13 atoms.  The
experiment is often called HMBC (heteronuclear multiple-bond correlation).

Now that the analysis has been completed it can be seen what the
function of various elements in the pulse sequence is.  The first pulse and
delay generate magnetization on proton which is anti-phase with respect to
the coupling to carbon-13.  The carbon-13 90° pulse turns this into multiple
quantum coherence.  This forms a filter through which magnetization not

F1

J12

F21Ω

2Ω

Schematic HMQC spectrum for
two coupled spins.
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bound to carbon-13 cannot pass and it is the basis of discrimination between
signals from protons bound and not bound to carbon-13.  The second
carbon-13 pulse returns the multiple quantum coherence to observable anti-
phase magnetization on proton.  Finally, the second delay ∆ turns the anti-
phase state into an in-phase state.  The centrally placed proton 180° pulse
refocuses the proton shift evolution for both the delays ∆ and t1.

7.1.3.2 Heteronuclear single-quantum correlation (HSQC)

This pulse sequence results in a spectrum identical to that found for HMQC.
Despite the pulse sequence being a little more complex than that for
HMQC, HSQC has certain advantages for recording the spectra of large
molecules, such a proteins.  The HSQC pulse sequence is often embedded in
much more complex sequences which are used to record two- and three-
dimensional spectra of carbon-13 and nitrogen-15 labelled proteins.

1H

13C
t1

y

A B C

t2∆
2

∆
2

∆
2

∆
2

The pulse sequence for HSQC.  Filled rectangles represent 90° pulses and open rectangles represent
180° pulses.  The delay ∆ is set to 1/(2J12); all pulses have phase x unless otherwise indicated.

If this sequence were to be analysed by considering each delay and pulse in
turn the resulting calculation would be far too complex to be useful.  A
more intelligent approach is needed where simplifications are used, for
example by recognizing the presence of spin echoes who refocus offsets or
couplings.  Also, it is often the case that attention can be focused a
particular terms, as these are the ones which will ultimately lead to
observable signals. This kind of "intelligent" analysis will be illustrated
here.

Periods A and C are spin echoes in which 180° pulses are applied to both
spins; it therefore follows that the offsets of spins 1 and 2 will be refocused,
but the coupling between them will evolve throughout the entire period.  As
the total delay in the spin echo is 1/(2J12) the result will be the complete
conversion of in-phase into anti-phase magnetization.

Period B is a spin echo in which a 180° pulse is applied only to spin 1.
Thus, the offset of spin 1 is refocused, as is the coupling between spins 1
and 2; only the offset of spin 2 affects the evolution.

With these simplifications the analysis is easy.  The first pulse generates
–I1y ; during period A this then becomes –2I1xI2z.  The 90°(y) pulse to spin 1
turns this to 2I1zI2z and the 90°(x) pulse to spin 2 turns it to –2I1zI2y.  The
evolution during period B is simply under the offset of spin 2

−  → − +2 2 21 2 2 1 1 2 2 1 1 2
2 1 2I I t I I t I Iz y
t I

z y z x
zΩ Ω Ωcos sin

The next two 90° pulses transfer the first term to spin 1; the second term is
rotated into multiple quantum and is not observed



7–14

− +  →

− −

+( )cos sin

cos sin

Ω Ω
Ω Ω

2 1 1 2 2 1 1 2
2

2 1 1 2 2 1 1 2

2 2

2 2

1 2t I I t I I

t I I t I I

z y z x
I I

y z y x

x xπ

The first term on the right evolves during period C  into in-phase
magnetization (the evolution of offsets is refocused).  So the final
observable term is cosΩ2 1 1t I x .  The resulting spectrum is therefore an in-
phase doublet in F2, centred at the offset of spin 1, and these peaks will both
have the same frequency in F1, namely the offset of spin 2.  The spectrum
looks just like the HMQC spectrum.

7.5 Advanced topic: Multiple-quantum spectroscopy

A key feature of two-dimensional NMR experiments is that no direct
observations are made during t1, it is thus possible to detect, indirectly, the
evolution of unobservable coherences.  An example of the use of this
feature is in the indirect detection of multiple-quantum spectra. A typical
pulse sequence for such an experiment is shown opposite

For a two-spin system the optimum value for ∆ is 1/(2J12).  The sequence
can be dissected as follows.  The initial 90° – ∆/2 – 180° – ∆/2 – sequence is
a spin echo which, at time ∆, refocuses any evolution of offsets but allows
the coupling to evolve and generate anti-phase magnetization.  This anti-
phase magnetization is turned into multiple-quantum coherence by the
second 90° pulse.  After evolving for time t1 the multiple quantum is
returned into observable (anti-phase) magnetization by the final 90° pulse.
Thus the first three pulses form the preparation period and the last pulse is
the mixing period.

7.5.1 Double-quantum spectrum for a three-spin system

The sequence will be analysed for a system of three spins.  A complete
analysis would be rather lengthy, so attention will be focused on certain
terms as above, as many simplifying assumptions as possible will be made
about the sequence.

The starting point will be equilibrium magnetization on spin 1, I1z; after
the spin echo the magnetization has evolved due to the coupling between
spin 1 and spin 2, and the coupling between spin 1 and spin 3 (the 180°
pulse causes an overall sign change (see section 6.4.1) but this has no real
effect here so it will be ignored)

– cos sin

cos cos sin cos

cos sin sin sin

I J I J I I

J J I J J I I

J J I I J

y
J I I

y x z

J I I
y x z

x z

z z

z z

1
2

12 1 12 1 2

2
13 12 1 13 12 1 3

13 12 1 2 13

12 1 2

13 1 3

2

2

2

π

π

π π

π π π π
π π π

∆

∆

∆ ∆

∆ ∆ ∆ ∆
∆ ∆ ∆

 → − +

 → − +

+ + ππJ I I Iy z z12 1 2 34∆
[3.1]

Of these four terms, all but the first are turned into multiple-quantum by the
second 90° pulse.  For example, the second term becomes a mixture of
double and zero quantum between spins 1 and 3

sin cos sin cosπ π π ππJ J I I J J I Ix z
I I I

x y
x x x

13 12 1 3
2

13 12 1 32 21 2 3∆ ∆ ∆ ∆+ +( ) → −

It will be assumed that appropriate coherence pathway selection has been
used so that ultimately only the double-quantum part contributes to the

∆
2

∆
2 t1

t2

Pulse sequence for multiple-
quantum spectroscopy.
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spectrum.  This part is

−[ ] +( ){ } ≡ ( )sin cosπ πJ J I I I I Bx y y x y13 12
1
2 1 3 1 3 132 2∆ ∆ DQ 13

The term in square brackets just gives the overall intensity, but does not
affect the frequencies of the peaks in the two-dimensional spectrum as it
does not depend on t1 or t2; this intensity term is denoted B13 for brevity.
The operators in the curly brackets represent a pure double quantum state
which can be denoted DQ 13

y
( ); the superscript (13) indicates that the double

quantum is between spins 1 and 3 (see section 6.9).

As is shown in section 6.9, such a double-quantum term evolves under
the offset according to

B

B t B t

y
t I t I t I

y x

z z z

13

13 3 1 13 3 1

1 1 1 2 1 2 3 1 3DQ

cos DQ DQ

13

1
13

1
13

( ) + +

( ) ( )

 →

+( ) − +( )

Ω Ω Ω

Ω Ω Ω Ωsin

where DQx
13( ) ≡ −( )1

2 1 3 1 32 2I I I Ix x y y .  This evolution is analogous to that of a

single spin where y rotates towards –x.

As is also shown in section 6.9, DQ  and DQ13 13
y x
( ) ( )  do not evolve under

the coupling between spins 1 and 3, but they do evolve under the sum of the
couplings between these two and all other spins; in this case this is simply
(J12+J23).  Taking each term in turn

B t

B t J J t

B t J J t I

B

y
J t I I J t I I

y
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z z z z
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Terms such as 2 22 2I Iz y z xDQ  and DQ13 13( ) ( )  can be thought of as double-
quantum coherence which has become "anti-phase" with respect to the
coupling to spin 2; such terms are directly analogous to single-quantum
anti-phase magnetization.

Of all the terms present at the end of t1, only DQ 13
y
( ) is rendered

observable by the final pulse

cos cos DQ

cos cos

1
13

1

Ω Ω

Ω Ω

+( ) +( )  →

+( ) +( ) +[ ]
( ) + +( )

3 1 12 23 1 13
2

3 1 12 23 1 13 1 3 1 3

1 2 3

2 2

t J J t B

t J J t B I I I I

y
I I I

x z z x

x x xπ

π

π

The calculation predicts that two two-dimensional multiplets appear in the
spectrum.  Both have the same structure in F1, namely an in–phase doublet,
split by (J12 + J23) and centred at (Ω1 + Ω3); this is analogous to a normal
multiplet.  In F2 one two-dimensional multiplet is centred at the offset of
spins 1, Ω1, and one at the offset of spin 3, Ω3; both multiplets are anti-phase
with respect to the coupling J13.  Finally, the overall amplitude, B13, depends
on the delay ∆ and all the couplings in the system.  The schematic spectrum
is shown opposite.  Similar multiplet structures are seen for the double-

F1

F2
1Ω 3Ω

+1Ω 3Ω

Schematic two-dimensional
double quantum spectrum
showing the multiplets arising
from evolution of double-
quantum coherence between
spins 1 and 3.  If has been
assumed that J12 > J 13 > J 23.
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quantum between spins 1 & 2 and spins 2 & 3.

7.5.2 Interpretation of double-quantum spectra

The double-quantum spectrum shows the relationship between the
frequencies of the lines in the double quantum spectrum and those in the
(conventional) single-quantum spectrum.  If two two-dimensional multiplets
appear at (F1, F2) = (ΩA + ΩB, ΩA) and (ΩA + ΩB, ΩB) the implication is that
the two spins A and B are coupled, as it is only if there is a coupling present
that double-quantum coherence between the two spins can be generated
(e.g. in the previous section, if J13 = 0 the term B13, goes to zero).  The fact
that the two two-dimensional multiplets share a common F1 frequency and
that this frequency is the sum of the two F2 frequencies constitute a double
check as to whether or not the peaks indicate that the spins are coupled.

Double quantum spectra give very similar information to that obtained
from COSY i.e. the identification of coupled spins.  Each method has
particular advantages and disadvantages:

(1)  In COSY the cross-peak multiplet is anti-phase in both dimensions,
whereas in a double-quantum spectrum the multiplet is only anti-phase in
F2.  This may lead to stronger peaks in the double-quantum spectrum due to
less cancellation.  However, during the two delays ∆ magnetization is lost
by relaxation, resulting in reduced peak intensities in the double-quantum
spectrum.

(2)  The value of the delay ∆ in the double-quantum experiment affects the
amount of multiple-quantum generated and hence the intensity in the
spectrum.  All of the couplings present in the spin system affect the intensity
and as couplings cover a wide range, no single optimum value for ∆ can be
given.  An unfortunate choice for ∆ will result in low intensity, and it is then
possible that correlations will be missed.  No such problems occur with
COSY.

(3)  There are no diagonal-peak multiplets in a double-quantum spectrum,
so that correlations between spins with similar offsets are relatively easy to
locate.  In contrast, in a COSY the cross-peaks from such a pair of spins
could be obscured by the diagonal.

(4)  In more complex spin systems the interpretation of a COSY remains
unambiguous, but the double-quantum spectrum may show a peak with F1

co-ordinate (ΩA + ΩB) and F2 co-ordinate ΩA (or ΩB) even when spins A and
B are not coupled.  Such remote peaks, as they are called, appear when
spins A and B are both coupled to a third spin.  There are various tests that
can differentiate these remote from the more useful direct peaks, but these
require additional experiments.  The form of these remote peaks in
considered in the next section.

On the whole, COSY is regarded as a more reliable and simple
experiment, although double-quantum spectroscopy is used in some special
circumstances.

7.5.3 Remote peaks in double-quantum spectra

The origin of remote peaks can be illustrated by returning to the calculation

F1

F2

AΩ BΩ

+AΩ BΩ

Schematic spectrum showing
the relationship between the
single- and double-quantum
frequencies for coupled spins.
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of section 7.5.1. and focusing on the doubly anti-phase term which is
present at the end of the spin echo (the fourth term in Eqn. [3.1])

sin sinπ πJ J I I Iy z z13 12 1 2 34∆ ∆

The 90° pulse rotates this into multiple-quantum

sin sin sin sinπ π π ππJ J I I I J J I I Iy z z
I I I

z y y
x x x

13 12 1 2 3
2

13 12 1 2 34 41 2 3∆ ∆ ∆ ∆+ +( ) →

The pure double-quantum part of this term is

− −( ) ≡ ( )1
2 13 12 1 2 3 1 2 3 23 1 1

234 4 2sin sin ,π πJ J I I I I I I B I DQz x x z y y z x
∆ ∆

In words, what has been generated in double-quantum between spins 2 and
3, anti-phase with respect to spin 1.  The key thing is that no coupling
between spins 2 and 3 is required for the generation of this term – the
intensity just depends on J12 and J13; all that is required is that both spins 2
and 3 have a coupling to the third spin, spin 1.

During t1 this term evolves under the influence of the offsets and the
couplings. Only two terms ultimately lead to observable signals; at the end
of t1 these two terms are

B t J J t I DQ
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y
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and after the final 90° pulse the observable parts are
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The first term results in a multiplet appearing at Ω1 in F2 and at (Ω2 + Ω3) in
F1.  The multiplet is doubly anti-phase (with respect to the couplings to
spins 2 and 3) in F2; in F 1 it is in-phase with respect to the sum of the
couplings J12 and J13.  This multiplet is a remote peak, as its frequency
coordinates do not conform to the simple pattern described in section 7.5.2.
It is distinguished from direct peaks not only by its frequency coordinates,
but also by having a different lineshape in F2 to direct peaks and by being
doubly anti-phase in that dimension.

The second and third terms are anti-phase with respect to the coupling
between spins 2 and 3, and if this coupling is zero there will be cancellation
within the multiplet and no signals will be observed.  This is despite the fact
that multiple-quantum coherence between these two spins has been
generated.

7.6 Advanced topic:
Lineshapes and frequency discrimination

This is a somewhat involved topic which will only be possible to cover in
outline here.

2I2zI3x

Ω3

J23

J23
decreasing

J23 = 0

J13

Illustration of how the intensity
of an anti-phase multiplet
decreases as the coupling
which it is in anti-phase with
respect to decreases.  The in-
phase multiplet is shown at the
top, and below are three
versions of the anti-phase
multiplet for successively
decreasing values of J23.
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7.6.1 One-dimensional spectra

Suppose that a 90°(y) pulse is applied to equilibrium magnetization
resulting in the generation of pure x-magnetization which then precesses in
the transverse plane with frequency Ω.  NMR spectrometers are set up to
detect the x- and y-components of this magnetization.  If it is assumed
(arbitrarily) that these components decay exponentially with time constant
T2 the resulting signals, S t S tx y( ) ( ) and , from the two channels of the
detector can be written

S t t t T S t t t Tx y( ) = −( ) ( ) = −( )γ γcos exp sin expΩ Ω2 2

where γ is a factor which gives the absolute intensity of the signal.

Usually, these two components are combined in the computer to give a
complex time-domain signal, S(t)

S t S t iS t

t i t t T

i t t T

x y( ) = ( ) + ( )
= +( ) −( )
= ( ) −( )

γ

γ

cos sin exp

exp exp

Ω Ω

Ω
2

2

[7.2]

The Fourier transform of S(t) is also a complex function, S(ω):

S FT S t

A iD

ω

γ ω ω

( ) = ( )[ ]
= ( ) + ( ){ }

where A(ω ) and D (ω) are the absorption and dispersion Lorentzian
lineshapes:
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2

2
2

2
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These lineshapes are illustrated opposite.  For NMR it is usual to display the
spectrum with the absorption mode lineshape and in this case this
corresponds to displaying the real part of S(ω).

7.6.1.1 Phase

Due to instrumental factors it is almost never the case that the real and
imaginary parts of S(t) correspond exactly to the x- and y-components of the
magnetization.  Mathematically, this is expressed by multiplying the ideal
function by an instrumental phase factor, φinstr

S t i i t t T( ) = ( ) ( ) −( )γ φexp exp expinstr Ω 2

The real and imaginary parts of S(t) are

Re cos cos sin sin exp

Im cos sin sin cos exp

S t t t t T

S t t t t T

( )[ ] = −( ) −( )
( )[ ] = +( ) −( )

γ φ φ

γ φ φ
instr instr

instr instr

Ω Ω

Ω Ω
2

2

Clearly, these do not correspond to the x– and y-components of the ideal
time-domain function.

The Fourier transform of S(t) carries forward the phase term

S i A iDω γ φ ω ω( ) = ( ) ( ) + ( ){ }exp instr

The real and imaginary parts of S(ω) are no longer the absorption and

All modern spectrometers use a
method know as quadrature
d e t e c t i o n , which in effect
means that both the x- and y-
c o m p o n e n t s  o f  t h e
magnetization are detected
simultaneously.

Ω

ω

ω

Absorpt ion (above) and
dispersion (below) Lorentzian
l ineshapes,  centred at
frequency Ω.
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dispersion signals:

Re cos sin

Im cos sin

S A D

S D A

ω γ φ ω φ ω

ω γ φ ω φ ω

( )[ ] = ( ) − ( )( )
( )[ ] = ( ) + ( )( )

instr instr

instr instr

Thus, displaying the real part of S(ω) will not give the required absorption
mode spectrum; rather, the spectrum will show lines which have a mixture
of absorption and dispersion lineshapes.

Restoring the pure absorption lineshape is simple. S(ω) is multiplied, in
the computer, by a phase correction factor, φcorr:

S i i i A iD

i A iD

ω φ γ φ φ ω ω

γ φ φ ω ω

( ) ( ) = ( ) ( ) ( ) + ( ){ }
= +( )( ) ( ) + ( ){ }

exp exp exp

exp

corr corr instr

corr instr

By choosing φcorr such that (φcorr + φinst) = 0 (i.e. φcorr = – φinstr) the phase terms
disappear and the real part of the spectrum will have the required absorption
lineshape.  In practice, the value of the phase correction is set "by eye" until
the spectrum "looks phased".  NMR processing software also allows for an
additional phase correction which depends on frequency; such a correction
is needed to compensate for, amongst other things, imperfections in
radiofrequency pulses.

7.6.1.2 Phase is arbitrary

Suppose that the phase of the 90° pulse is changed from y  to x.  T h e
magnetization now starts along –y and precesses towards x; assuming that
the instrumental phase is zero, the output of the two channels of the detector
are

S t t t T S t t t Tx y( ) = −( ) ( ) = − −( )γ γsin exp cos expΩ Ω2 2

The complex time-domain signal can then be written

S t S t iS t

t i t t T

i t i t t T

i i t t T

i i t t T

x y( ) = ( ) + ( )
= −( ) −( )

−( ) +( ) −( )
= −( ) ( ) −( )
= ( ) ( ) −( )

γ

γ

γ

γ φ

sin cos exp

cos sin exp

exp exp

exp exp exp

Ω Ω

Ω Ω

Ω

Ω

2

2

2

2exp

Where φ e x p , the "experimental" phase, is –π/2 (recall that
exp cos sini iφ φ φ( ) = + , so that exp(–i π/2) = –i).

It is clear from the form of S(t) that this phase introduced by altering the
experiment (in this case, by altering the phase of the pulse) takes exactly the
same form as the instrumental phase error.  It can, therefore, be corrected by
applying a phase correction so as to return the real part of the spectrum to
the absorption mode lineshape. In this case the phase correction would be
π/2.

The Fourier transform of the original signal is

S i A iD

S D S A

ω γ ω ω

ω γ ω ω γ ω

( ) = −( ) ( ) + ( ){ }
( )[ ] = ( ) ( )[ ] = − ( )Re Im
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Thus the real part shows the dispersion mode lineshape, and the imaginary
part shows the absorption lineshape.  The 90° phase shift simply swaps over
the real and imaginary parts.

7.6.1.3 Relative phase is important

The conclusion from the previous two sections is that the lineshape seen in
the spectrum is under the control of the spectroscopist.  It does not matter,
for example, whether the pulse sequence results in magnetization appearing
along the x- or y- axis (or anywhere in between, for that matter).  It is
always possible to phase correct the spectrum afterwards to achieve the
desired lineshape.

However, if an experiment leads to magnetization from different
processes or spins appearing along different axes, there is no single phase
correction which will put the whole spectrum in the absorption mode.  This
is the case in the COSY spectrum (section 7.4.1).  The terms leading to
diagonal-peaks appear along the x-axis, whereas those leading to cross-
peaks appear along y.  Either can be phased to absorption, but if one is in
absorption, one will be in dispersion; the two signals are fundamentally 90°
out of phase with one another.

7.6.1.4 Frequency discrimination

Suppose that a particular spectrometer is only capable of recording one, say
the x-, component of the precessing magnetization.  The time domain signal
will then just have a real part (compare Eqn. [7.2] in section 7.6.1)

S t t t T( ) = −( )γ cos expΩ 2

Using the identity cos exp expθ θ θ= ( ) + −( )( )1
2 i i  this can be written

S t i t i t t T

i t t T i t t T

( ) = ( ) + ( )[ ] −( )
= ( ) −( ) + ( ) −( )

1
2 2

1
2 2

1
2 2

γ

γ γ

exp exp – exp

exp exp exp – exp

Ω Ω

Ω Ω
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The Fourier transform of the first term gives, in the real part, an absorption
mode peak at ω = +Ω; the transform of the second term gives the same but
at ω = –Ω.

Re[ ] –S A Aω γ γ( ) = ++
1
2

1
2

where A+ represents an absorption mode Lorentzian line at ω = +Ω and A–

represents the same at ω  = –Ω; likewise, D+ and D – represent dispersion
mode peaks at +Ω and –Ω, respectively.

This spectrum is said to lack frequency discrimination, in the sense that it
does not matter if the magnetization went round at +Ω or –Ω, the spectrum
still shows peaks at both +Ω and –Ω.  This is in contrast to the case where
both the x- and y-components are measured where one peak appears at
either positive or negative ω depending on the sign of Ω.

The lack of frequency discrimination is associated with the signal being
modulated by a cosine wave, which has the property that cos(Ω t)  =
cos(–Ωt), as opposed to a complex exponential, exp(iΩt) which is sensitive
to the sign of Ω.  In one-dimensional spectroscopy it is virtually always
possible to arrange for the signal to have this desirable complex phase
modulation, but in the case of two-dimensional spectra it is almost always
the case that the signal modulation in the t1 dimension is of the form
cos(Ωt1) and so such spectra are not naturally frequency discriminated in the
F1 dimension.

Suppose now that only the y-component of the precessing magnetization
could be detected.  The time domain signal will then be (compare Eqn. [3.2]
in section 7.6.1)

S t i t t T( ) = −( )γ sin expΩ 2

Using the identity sin exp expθ θ θ= ( ) − −( )( )1
2i i i  this can be written

S t i t i t t T

i t t T i t t T

( ) = ( ) − ( )[ ] −( )
= ( ) −( ) − ( ) −( )

1
2 2

1
2 2

1
2 2

γ

γ γ

exp exp – exp

exp exp exp – exp

Ω Ω

Ω Ω

and so

Re[ ] –S A Aω γ γ( ) = −+
1
2

1
2

This spectrum again shows two peaks, at ±Ω , but the two peaks have
opposite signs; this is associated with the signal being modulated by a sine
wave, which has the property that sin(–Ωt)  = – sin(Ωt).  If the sign of Ω
changes the two peaks swap over, but there are still two peaks.  In a sense
the spectrum is frequency discriminated, as positive and negative
frequencies can be distinguished, but in practice in a spectrum with many
lines with a range of positive and negative offsets the resulting set of
possibly cancelling peaks would be impossible to sort out satisfactorily.

7.6.2 Two-dimensional spectra

7.6.2.1 Phase and amplitude modulation

There are two basic types of time-domain signal that are found in two-
dimensional experiments.  The first is phase modulation, in which the
evolution in t1 is encoded as a phase, i.e. mathematically as a complex

ω + 0 –

ω + 0 –

ω + 0 –

a

b

c

Spectrum a  has peaks at
pos i t i ve  and negat ive
frequencies and is frequency
discriminated.  Spectrum b
resul ts f rom a cosine
modulated time-domain data
set; each peak appears at both
pos i t i ve  and negat ive
frequency, regardless of
whether its real offset is
positive or negative.  Spectrum
c results from a sine modulated
data set; like b  each peak
appears twice, but with the
added complication that one
peak is inverted.  Spectra b and
c lack frequency discrimination
and are quite uninterpretable as
a result.
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exponential

S t t i t t T i t t T1 2 1 1 1 2
1

2 2 2 2
2, exp exp exp exp( ) = ( ) −( ) ( ) −( )( ) ( )

phase
γ Ω Ω

where Ω1 and Ω2 are the modulation frequencies in t1 and t2 respectively,
and T2

1( ) and T2
2( ) are the decay time constants in t1 and t2 respectively.

The second type is amplitude modulation, in which the evolution in t1 is
encoded as an amplitude, i.e. mathematically as sine or cosine

S t t t T i t t T

S t t t T i t t T

c

s

( ) = ( ) −( ) ( ) −( )
( ) = ( ) −( ) ( ) −( )

( ) ( )

( ) ( )

γ

γ

cos exp exp exp

sin exp exp exp

Ω Ω

Ω Ω

1 1 1 2
1

2 2 2 2
2

1 1 1 2
1

2 2 2 2
2

Generally, two-dimensional experiments produce amplitude modulation,
indeed all of the experiments analysed in this chapter have produced either
sine or cosine modulated data.  Therefore most two-dimensional spectra are
fundamentally not frequency discriminated in the F1 dimension.  As
explained above for one-dimensional spectra, the resulting confusion in the
spectrum is not acceptable and steps have to be taken to introduce frequency
discrimination.

It will turn out that the key to obtaining frequency discrimination is the
ability to record, in separate experiments, both sine and cosine modulated
data sets.  This can be achieved by simply altering the phase of the pulses in
the sequence.

For example, consider the EXSY sequence analysed in section 7.2 .  The
observable signal, at time t2 = 0, can be written

1 1 1 1 1 1 2−( ) +f t I f t Iy ycos cosΩ Ω

If, however, the first pulse in the sequence is changed in phase from x to y
the corresponding signal will be

− −( ) −1 1 1 1 1 1 2f t I f t Iy ysin sinΩ Ω

i.e. the modulation has changed from the form of a cosine to sine.  In COSY
and DQF COSY a similar change can be brought about by altering the phase
of the first 90° pulse.  In fact there is a general procedure for effecting this
change, the details of which are given in a later chapter.

7.6.2.2 Two-dimensional lineshapes

The spectra resulting from two-dimensional Fourier transformation of phase
and amplitude modulated data sets can be determined by using the
following Fourier pair

FT i t t T A iDexp expΩ( ) −( )[ ] = ( ) + ( ){ }2 ω ω

where A and D are the dispersion Lorentzian lineshapes described in section
7.6.1

Phase modulation

For the phase modulated data set the transform with respect to t2 gives

S t i t t T A iD1 2 1 1 1
1 2 2

2
, exp expω γ( ) = ( ) −( ) +[ ]( )

+
( )

+
( )

phase
Ω

where A+
( )2  indicates an absorption mode line in the F2 dimension at ω2 =
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+Ω2 and with linewidth set by T2
2( ); similarly D+

( )2  is the corresponding
dispersion line.

The second transform with respect to t1 gives

S A iD A iDω ω γ1 2
1 1 2 2,( ) = +[ ] +[ ]+

( )
+
( )

+
( )

+
( )

phase

where A+
( )1  indicates an absorption mode line in the F1 dimension at ω1 =

+Ω1 and with linewidth set by T2
1( ); similarly D+

( )1  is the corresponding
dispersion line.

The real part of the resulting two-dimensional spectrum is

Re ,S A A D Dω ω γ1 2
1 2 1 2( )[ ] = −( )+

( )
+
( )

+
( )

+
( )

phase

This is a single line at (ω1,ω2) = (+Ω1,+Ω2) with the phase-twist lineshape,
illustrated below.

Pseudo 3D view and contour plot of the phase-twist lineshape.

The phase-twist lineshape is an inextricable mixture of absorption and
dispersion; it is a superposition of the double absorption and double
dispersion lineshape (illustrated in section 7.4.1).  No phase correction will
restore it to pure absorption mode.  Generally the phase twist is not a very
desirable lineshape as it has both positive and negative parts, and the
dispersion component only dies off slowly.

Cosine amplitude modulation

For the cosine modulated data set the transform with respect to t2 gives

S t t t T A iD
c1 2 1 1 1 2

1 2 2, cos expω γ( ) = ( ) −( ) +[ ]( )
+
( )

+
( )Ω

The cosine is then rewritten in terms of complex exponentials to give

S t i t i t t T A iD1 2
1
2 1 1 1 1 1 2

1 2 2, exp exp expω γ( ) = ( ) + −( )[ ] −( ) +[ ]( )
+
( )

+
( )

c
Ω Ω

The second transform with respect to t1 gives

S A iD A iD A iDω ω γ1 2
1
2

1 1 1 1 2 2,( ) = +{ } + +{ }[ ] +[ ]+
( )

+
( )

−
( )

−
( )

+
( )

+
( )

c

where A−
( )1  indicates an absorption mode line in the F1 dimension at ω1 =

–Ω1 and with linewidth set by T
2

1( ) ; similarly D–
1( ) is the corresponding

dispersion line.

The real part of the resulting two-dimensional spectrum is

Re ,S A A D D A A D Dω ω γ γ1 2
1
2

1 2 1 2 1
2

1 2 1 2( )[ ] = −( ) + −( )+
( )

+
( )

+
( )

+
( )

−
( )

+
( )

−
( )

+
( )

c

This is a two lines, both with the phase-twist lineshape; one is located at
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(+Ω1,+Ω2) and the other is at (–Ω1,+Ω2).  As expected for a data set which is
cosine modulated in t1 the spectrum is symmetrical about ω1 = 0.

A spectrum with a pure absorption mode lineshape can be obtained by
discarding the imaginary part of the time domain data immediately after the
transform with respect to t2; i.e. taking the real part of S t

c1 2,ω( )
S t S t

t t T A

c c1 2 1 2

1 1 1 2
1 2

, Re ,

cos exp

ω ω

γ

( ) = ( )[ ]
= ( ) −( )( )

+
( )

Re

Ω

Following through the same procedure as above:

S t i t i t t T A
c1 2

1
2 1 1 1 1 1 2

1 2, exp exp expω γ( ) = ( ) + −( )[ ] −( )( )
+
( )Re Ω Ω

S A iD A iD A
c

ω ω γ1 2
1
2

1 1 1 1 2,( ) = +{ } + +{ }[ ]+
( )

+
( )

−
( )

−
( )

+
( )Re

The real part of the resulting two-dimensional spectrum is

Re ,
Re

S A A A A
c

ω ω γ γ1 2
1
2

1 2 1
2

1 2( )[ ] = ++
( )

+
( )

−
( )

+
( )

This is two lines, located at (+Ω1,+Ω2) and (–Ω1,+Ω2), but in contrast to the
above both have the double absorption lineshape.  There is still lack of
frequency discrimination, but the undesirable phase-twist lineshape has
been avoided.

Sine amplitude modulation

For the sine modulated data set the transform with respect to t2 gives

S t t t T A iD1 2 1 1 1 2
1 2 2, sin expω γ( ) = ( ) −( ) +[ ]( )

+
( )

+
( )

s
Ω

The cosine is then rewritten in terms of complex exponentials to give

S t i t i t t T A iDi1 2
1
2 1 1 1 1 1 2

1 2 2, exp exp expω γ( ) = ( ) − −( )[ ] −( ) +[ ]( )
+
( )

+
( )

s
Ω Ω

The second transform with respect to t1 gives

S A iD A iD A iDiω ω γ1 2
1
2

1 1 1 1 2 2,( ) = +{ } − +{ }[ ] +[ ]+
( )

+
( )

−
( )

−
( )

+
( )

+
( )

s

The imaginary part of the resulting two-dimensional spectrum is

Im ,S A A D D A A D Dω ω γ γ1 2
1
2

1 2 1 2 1
2

1 2 1 2( )[ ] = − −( ) + −( )+
( )

+
( )

+
( )

+
( )

−
( )

+
( )

−
( )

+
( )

s

This is two lines, both with the phase-twist lineshape but with opposite
signs; one is located at (+Ω 1,+Ω2) and the other is at (–Ω 1,+Ω2).  As
expected for a data set which is sine modulated in t1 the spectrum is anti-
symmetric about ω1 = 0.

As before, a spectrum with a pure absorption mode lineshape can be
obtained by discarding the imaginary part of the time domain data
immediately after the transform with respect to t2; i.e. taking the real part of
S t1 2,ω( )s

S t S t

t t T A

s s1 2 1 2

1 1 1
1 2

2

, Re ,

sin exp

Reω ω

γ

( ) = ( )[ ]
= ( ) −( )( )

+
( )Ω

Following through the same procedure as above:
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S t i t i t t T A
s i1 2

1
2 1 1 1 1 1

1 2
2

, exp exp exp
Reω γ( ) = ( ) − −( )[ ] −( )( )

+
( )Ω Ω

S A iD A iD A
s iω ω γ1 2

1
2

1 1 1 1 2,
Re( ) = +{ } − +{ }[ ]+

( )
+
( )

−
( )

−
( )

+
( )

The imaginary part of the resulting two-dimensional spectrum is

Im ,S A A A Aω ω γ γ1 2
1
2

1 2 1
2

1 2( )[ ] = − ++
( )

+
( )

−
( )

+
( )

s

Re

The two lines now have the pure absorption lineshape.

7.6.2.3 Frequency discrimination with retention of absorption lineshapes

It is essential to be able to combine frequency discrimination in the F1

dimension with retention of pure absorption lineshapes.  Three different
ways of achieving this are commonly used; each will be analysed here.

States-Haberkorn-Ruben method

The essence of the States-Haberkorn-Ruben (SHR) method is the
observation that the cosine modulated data set, processed as described in
section 7.6.1.2, gives two positive absorption mode peaks at (+Ω1,+Ω2) and
(–Ω1,+Ω2), whereas the sine modulated data set processed in the same way
gives a spectrum in which one peak is negative and one positive.
Subtracting these spectra from one another gives the required absorption
mode frequency discriminated spectrum (see the diagram below):

Re , Im ,S S

A A A A A A A A

A A

ω ω ω ω

γ γ γ γ

γ

1 2 1 2

1
2

1 2 1
2

1 2 1
2

1 2 1
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1 2

1 2

( )[ ] − ( )[ ]
= +[ ] − − +[ ]
=

+
( )

+
( )

−
( )

+
( )

+
( )

+
( )

−
( )

+
( )

+
( )

+
( )

c

Re

s

Re

In practice it is usually more convenient to achieve this result in the
following way, which is mathematically identical.

The cosine and sine data sets are transformed with respect to t2 and the
real parts of each are taken.  Then a new complex data set is formed using
the cosine data for the real part and the sine data for the imaginary part:

S t S t iS t

t t T A i t t T A

i t t T A

1 2 1 2 1 2

1 1 1
1 2

1 1 1
1 2

1 1 1
1 2

2 2

2

, , ,

cos exp sin exp

exp exp

ω ω ω

γ γ

γ

( ) = ( ) + ( )
= ( ) −( ) + ( ) −( )
= ( ) −( )

( )
+
( ) ( )

+
( )

( )
+
( )

SHR

Re Re

c s

Ω Ω

Ω

Fourier transformation with respect to t1 gives a spectrum whose real part
contains the required frequency discriminated absorption mode spectrum

S A iD A

A A iD A

ω ω γ

γ

1 2
1 1 2

1 2 1 2

,( ) = +[ ]
= +

+
( )

+
( )

+
( )

+
( )

+
( )

+
( )

+
( )

SHR

Marion-Wüthrich or TPPI method

The idea behind the TPPI (time proportional phase incrementation) or
Marion–Wüthrich (MW) method is to arrange things so that all of the peaks
have positive offsets.  Then, frequency discrimination would not be required
as there would be no ambiguity.

1ω

2ω

0

cosine

sine

difference

– +1Ω+1Ω–

2Ω

1Ω+1Ω–

1Ω+

Illustration of the way in which
the SHR method achieves
frequency discrimination by
combining cosine and sine
modulated spectra.
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One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum.  Simple though this is, it
is not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the
spectrum, but it is made to appear that all the frequencies are positive by
phase shifting systematically some of the pulses in the sequence in concert
with the incrementation of t1.

In section 7.2 it was shown that in the EXSY sequence the cosine
modulation in t1, cos(Ω1t1), could be turned into sine modulation, –
sin(Ω1t1), by shifting the phase of the first pulse by 90°.  The effect of such a
phase shift can be represented mathematically in the following way.

Recall that Ω is in units of radians s–1, and so if t is in seconds Ωt is in
radians; Ωt can therefore be described as a phase which depends on time.  It
is also possible to consider phases which do not depend on time, as was the
case for the phase errors considered in section 7.6.1.1

The change from cosine to sine modulation in the EXSY experiment can
be though of as a phase shift of the signal in t1.  Mathematically, such a
phase shifted cosine wave is written as cos Ω1 1t +( )φ , where φ is the phase
shift in radians.  This expression can be expanded using the well known
formula cos cos cos sin sinA B A B A B+( ) = −  to give

cos cos cos sin sinΩ Ω Ω1 1 1 1t t t+( ) = −φ φ φ
If the phase shift, φ, is π/2 radians the result is

cos cos cos sin sin

sin

Ω Ω Ω
Ω

1 1 1 1

1

2 2 2t t t

t

+( ) = −
= −

π π π

In words, a cosine wave, phase shifted by π/2 radians (90°) is the same thing
as a sine wave.  Thus, in the EXSY experiment the effect of changing the
phase of the first pulse by 90° can be described as a phase shift of the signal
by 90°.

Suppose that instead of a fixed phase shift, the phase shift is made
proportional to t1; what this means is that each time t1 is incremented the
phase is also incremented in concert.  The constant of proportion between
the time dependent phase, φ(t1), and t1 will be written ωadditional

φ ωt t1 1( ) = additional

Clearly the units of ωadditional are radians s–1, that is ωadditional is a frequency.
The new time-domain function with the inclusion of this incrementing phase
is thus

cos cos

cos

Ω Ω

Ω
1 1 1 1 1 1

1 1

t t t t

t

+ ( )( ) = +( )
= +( )

φ ω

ω
additional

additional

In words, the effect of incrementing the phase in concert with t1 is to add a
frequency ω additional  to all of the offsets in the spectrum.  The TPPI method
utilizes this option of shifting all the frequencies in the following way.
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In one-dimensional pulse-Fourier transform NMR the free induction
signal is sampled at regular intervals ∆.  After transformation the resulting
spectrum displays correctly peaks with offsets in the range –(SW/2) to
+(SW/2) where SW is the spectral width which is given by 1/∆ (this comes
about from the Nyquist theorem of data sampling).  Frequencies outside this
range are not represented correctly.

Suppose that the required frequency range in the F1 dimension is from
–(SW1/2) to +(SW1/2) (in COSY and EXSY this will be the same as the
range in F2).  To make it appear that all the peaks have a positive offset, it
will be necessary to add (SW1/2) to all the frequencies.  Then the peaks will
be in the range 0 to (SW1).

As the maximum frequency is now (S W1) rather than (SW1/2) the
sampling interval, ∆1, will have to be halved i.e. ∆1 = 1/(2SW1) in order that
the range of frequencies present are represented properly.

The phase increment is ω additionalt1, but t1 can be written as n∆1 for the nth
increment of t1.  The required value for ω additional  is 2π(SW1/2) , where the 2π
is to convert from frequency (the units of SW1) to rad s–1, the units of
ω additional .  Putting all of this together ω additionalt1 can be expressed, for the nth
increment as

ω π

π

π

additionalt
SW

n

SW
n

SW

n

1
1

1

1

1

2
2

2
2

1

2

2

= 



( )

= 










=

∆

The way in which the phase incrementation increases the frequency of the
cosine wave is shown below:

time

The open circles lie on a cosine wave, cos(Ω × n∆ ), where ∆ is the sampling interval and n runs 0, 1, 2
...  The closed circles lie on a cosine wave in which an additional phase is incremented on each point
i.e. the function is cos(Ω × n∆ + n φ); here φ = π/8.  The way in which this phase increment increases the
frequency of the cosine wave is apparent.

0 +SW1/2–SW1/2

0 +SW1

a

b

c

0 +SW1–SW1

Illustration of the TPPI method.
The normal spectrum is shown
in a , with peaks in the range
–SW/2 to +SW/2.  Adding a
frequency of S W/2 to all the
peaks gives them all positive
offsets, but some, shown
dotted) will then fall outside the
spectral window – spectrum b.
If the spectral width is doubled
all peaks are represented
correctly – spectrum c.
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In words this means that each time t1 is incremented, the phase of the signal
should also be incremented by 90°, for example by incrementing the phase
of one of the pulses.  The way in which it can be decided which pulse to
increment will be described in a later chapter.

A data set from an experiment to which TPPI has been applied is simply
amplitude modulated in t1 and so can be processed according to the method
described for cosine modulated data so as to obtain absorption mode
lineshapes.  As the spectrum is symmetrical about F1 = 0 it is usual to use a
modified Fourier transform routine which saves effort and space by only
calculating the positive frequency part of the spectrum.

Echo anti-echo method

Few two-dimensional experiments naturally produce phase modulated data
sets, but if gradient pulses are used for coherence pathway selection it is
then quite often found that the data are phase modulated.  In one way this is
an advantage, as it means that no special steps are required to obtain
frequency discrimination.  However, phase modulated data sets give rise to
spectra with phase-twist lineshapes, which are very undesirable.  So, it is
usual to attempt to use some method to eliminate the phase-twist lineshape,
while at the same time retaining frequency discrimination.

The key to how this can be done lies in the fact that two kinds of phase
modulated data sets can usually be recorded.  The first is called the P-type
or anti-echo spectrum

S t t i t t T i t t T1 2 1 1 1
1

2 2 2
2

2 2
, exp exp exp exp( ) = ( ) −( ) ( ) −( )( ) ( )

P
γ Ω Ω

the "P" indicates positive, meaning here that the sign of the frequencies in
F1 and F2 are the same.

The second data set is called the echo or N-type

S t t i t t T i t t T1 2 1 1 1
1

2 2 2
2

2 2
, exp – exp exp exp( ) = ( ) −( ) ( ) −( )( ) ( )

N
γ Ω Ω

the "N" indicates negative, meaning here that the sign of the frequencies in
F1 and F2 are opposite.  As will be explained in a later chapter in gradient
experiments it is easy to arrange to record either the P- or N-type spectrum.

The simplest way to proceed is to compute two new data sets which are
the sum and difference of the P- and N-type data sets:
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These two combinations are just the cosine and sine modulated data sets that
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TPPI phase incrementation
applied to a COSY sequence.
The phase of the first pulse is
incremented by 90° each time t1
is incremented.
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are the inputs needed for the SHR method.  The pure absorption spectrum
can therefore be calculated in the same way starting with these
combinations.

7.6.2.4 Phase in two-dimensional spectra

In practice there will be instrumental and other phase shifts, possibly in both
dimensions, which mean that the time-domain functions are not the
idealised ones treated above.  For example, the cosine modulated data set
might be

S t t t T i t i t Tc( ) = +( ) −( ) +( ) −( )( ) ( )γ φ φcos exp exp expΩ Ω1 1 1 1
1

2 2 2 2
2

2 2

where φ1 and φ2 are the phase errors in F1 and F1, respectively.  Processing
this data set in the manner described above will not give a pure absorption
spectrum.  However, it is possible to recover the pure absorption spectrum
by software manipulations of the spectrum, just as was described for the
case of one-dimensional spectra.  Usually, NMR data processing software
provides options for making such phase corrections to two-dimensional data
sets.


