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Further relaxation

6.1 Introduction

As presented so far, the theory is capable of predicting the rate of transitions
between energy levels i.e. it is concerned with populations.  The theory is
thus perfectly acceptable for predicting the rate constants for relaxation of
longitudinal magnetization ("T1"), but is incapable of dealing with
transverse magnetization ("T2").  To do this, it is necessary to consider the
evolution of coherences under the random hamiltonian.

A convenient way of proceeding is to look at the relaxation behaviour of
operators.  This fits in well with the Solomon equations, an approach
already used for discussing the dynamics of z-magnetization and
populations.  The operator method is less well suited to discussing the
relaxation behaviour of individual lines, but it will be seen that with some
modifications is can be adapted to this use.

This Section starts with a brief revision of the properties of operators.

6.2 Properties of operators

6.2.1 Matrix representations

Operators were introduced in Section 1.2 as the way in which observable
quantities are represented in quantum mechanics.  It is sometimes
convenient to think of operators as matrices, and the matrix representation
of an operator can be formed in a particular basis set of wavefunctions
(Sections 1.2.4 and 1.7.1).

The ijth element (meaning the element in row i and column j) of the
matrix representation of an operator A is Aij, given by

A A Aij i j i j= ≡∫φ φ τ φ φ* d

where φi is a basis function.  The same operator will have different matrix
representations in different sets of basis functions.

If a matrix has the property that

A Aji ij= *

the matrix is said to be hermetian.  Operators whose matrix representations
are hermetian are called hermetian operators.  Examples of such operators
are the familiar angular momentum operators Ix, Iy and Iz.

The adjoint of an operator A, A†, is defined in the following way

A A
ij ji

† *( ) =

Hermetian operators, such as Ix, are self adjoint, meaning that the adjoint of
the operator is equal to the operator.  This follows as A Aji ij

* =  for a
hermetian operator and so A†

ij = Aij.

The raising and lowering operators, I+ and I–, are not hermetian, a fact
that can readily be appreciated from the matrix representations:
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I I iI I I iIx y x y+ = + = 





= − = 





0 1

0 0

0 0

1 0
             –

These operators are the adjoints of one another:

I I I I+ − += =†
–

†      

Again, this is readily appreciated from the matrix representations.

The trace of an operator is equal to the sum of its diagonal elements

Tr A Aii
i

{ } = ∑

6.1.2 Basis sets of operators

The density operator, σ, can be expanded in a basis of operators, Bi:

  
σ = + + = ∑b B b B b Bi i

i
1 1 2 2 K

where the bi are numerical coefficients.  A basis set of wavefunctions can be
described as being orthonormal (Section 1.2.4), which means that they have
the properties

φ φi j i j i j= ≠ =0  if    and  = 1 if ;

For operators, orthogonality is defined using the trace.  Two operators Bi

and Bj are orthogonal if

Tr B Bi j
†{ } = 0

To compute the trace, it would be necessary to find the matrix
representations of Bi

† and Bj, multiply these together to give another matrix
and then add up the diagonal elements of the resulting matrix.  The
operators Ix, Iy and Iz are all orthogonal to one another.

Normalization also involves computation of the trace of the adjoint of an
operator with itself

Tr B Bi i i
†{ } = β

Sometimes a basis set of operators are chosen so that βi = 1, and sometimes
the operators are chosen so that βi is the same for each operator, but not
necessarily = 1.  For example:

Tr Tr = TrI I I I I Ix x y y z z{ } = { } { } = 1
2 .

The set of product operators for two spins (I1x, 2 I1xI2z etc.) all have βi = 1;
the factor of 2 in the operator products with two spin operators is needed to
keep the βi the same for all the operators.

6.1.3 Commutators

The commutator of two operators is written [A,B] and defined as follows

A B AB BA,[ ] = −
If A and B are numbers or simple functions, then the order in which they
appear does not matter.  For example 2×3 = 3×2 and x×y2 = y2×x.  Such
simple functions are said to commute; the commutator between them is zero
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x y xy y x, 2 2 2 0[ ] = − =

However, not all operators are simple functions and so they do not
necessarily commute with one another.  In particular, the angular
momentum operators obey the following commutation relations

Ix, Iy and Iz.

I I iI I I iI I I iIx y z y z x z x y, , ,[ ] = [ ] = [ ] =          

The second commutator can be found from the first by cyclic permutation of
the indices: x→y , y→z, z→x; likewise the third can be found from the
second by further cyclic permutation.

Using these relationships and the definitions of I+ and I– the following
can be derived

I I I I I I I I Iz z z+ + − − + −[ ] = [ ] = [ ] =, , ,          2

Operators for different spins always commute with one another, and an
operator always commutes with itself.  For example

I I I I I I I Ix z x z z x z z1 2 1 2 3 1 2 30 4 4 0, ,[ ] = [ ] =     

6.1.1.1 Commutator relations

The following properties are often useful

A B B A

PA B P A B A B

A B C A C B C

, ,

, ,

, , ,

[ ] = −[ ]
[ ] = [ ]

+[ ] = [ ] + [ ]
   if P commutes with  and 

6.1.1.2 Operator products

The commutator relations given in Section 6.1.3 for Ix, Iy and Iz apply for
any spin.  For spin 1

2  only the following relationships also apply

I I iI I I iI x y zx y z y x z= = −1
2

1
2         and for cyclic permutations of  and ,

I I I E Ex y z
2 2 2 1

4= = =     where  is the unit operator or matrix

There are also similar special relationships for the raising and lowering
operators.

I I I I I I I Iz z+ − + − − += = = +( ) = −( )2 2 1
2

1
20 1 2 1 2        

Since I I iIx y z,[ ] =  and I I iIx y z= 1
2 , it follows that

I I I I I I I Ix y x y y x y x= [ ] = [ ]1
2

1
2, ,     

These relationships are also valid for cyclic permutations of x, y and z.

If these relationships apply (i.e. for spin half) then it follows that

AP BQ A B P Q,[ ] = 0 if  and  both commute with  and 

An example of the latter is when A and B are operators of spin 1 and P and
Q are operators of spin 2

I I I Ix y y z1 2 1 2 0,[ ] =

Another special case which will be of use is
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AP AQ A P Q P Q A I I Ix y z, , , ,[ ] = [ ] = [ ] =2 1
4         or 

provided A commutes with P and Q.

6.2 Operator equations

The time evolution of coherences is conveniently handled using the
density matrix introduced in Section 1.7 .  Further, it is useful to make an
operator expansion of this density matrix as this fits in well with the product
operator approach (Section 3) used to described many multiple pulse
experiments.  In addition, this operator approach is closely related to the
Solomon equations introduced in Section 5.1.3.

The starting point is the equation of motion of the density matrix (or
operator)

d
d
σ σt

t
i H t

( ) = − ( )[ ],

where the square bracket indicates the commutator

A B AB BA,[ ] = −
As before, the hamiltonian consists of a static part, H0, and a random time
dependent part, H1(t)

H H H t= + ( )0 1

A transformed density operator, σT, and transformed time dependent
hamiltonian, H t1

T ( ), are defined as

σ σT Tt iH t t iH t H t iH t H t iH t( ) = ( ) ( ) −( ) ( ) = ( ) ( ) −( )exp exp exp exp0 0 1 0 1 0

It can be shown that the equation of motion of σT is

d
d

T
T Tσ σt

t
i H t t

( ) = − ( ) ( )[ ]1 , [1]

This transformed representation is called the interaction representation.  It
is useful as σT just evolves under the action of the random hamiltonian; the
evolution due to the large static hamiltonian has been factored out.  It will
be seen that the influence of H0 appears as a simple phase evolution of
H t1

T ( ).
Equation [1] can be solved to second order in the perturbation

represented by the random hamiltonian to give

d
d

d
T

T T Tσ τ σ τt

t
H t H t t

( ) = − ( ) −( ) ( )[ ][ ]
∞

∫ 1 1

0

, , [2]

There are various approximations involved in this derivation, all of which
rely on the fact that the random hamiltonian represents a small perturbation
and that the theory is to be used for times longer than the correlation time,
τc.  Equation [2] is the master equation for the motion of the density
operator.

However, this equation has one defect: it predicts that at long times the
density operator goes to zero.  This is incorrect – at long times the density
operator must go to its equilibrium value, which is not zero but corresponds
to the equilibrium population distribution.  The reason for this defect is
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identical to that discussed in Section 5.1.2 – it comes from the failure to
treat the lattice as a quantum object.  The solution to this problem is either
to treat that lattice properly (which will be rather complex), or simply to
replace σT by (σT – σeq), where σeq is the equilibrium density operator.  In all
that follows it will be assumed that this replacement is made at the end of
the calculation.

6.2.1 Operator expansion

To develop Eq. [2] into a useful form, H1(t) is expanded according to

H t F t Aq

q

q
1( ) = ( )( ) ( )∑

where the F(q)(t) are spatial functions and the A(q) are spin operators.  This
expansion allows for the possibility that there are several different terms,
with different spatial factors, in the random hamiltonian.  Since collisions
cause the molecule to randomly change its orientation, the spatial functions
become random functions of time.

The operators A(q) are chosen so that they evolve under the static
hamiltonian according to

exp exp expiH t A iH t i t Aq q q
0 0( ) −( ) = ( )( ) ( ) ( )ω [3]

where the frequency ω(q) is characteristic of the operator A(q).  For example,
in the case of a single spin, for which H0 = ω0Iz, the operator I+ evolves in
the way given by Eq. [3]:

exp exp expiH t I iH t i t I0 0 0( ) −( ) = −( )+ +ω

with ω(q) = –ω0.  Likewise, I– and Iz evolve at frequencies +ω0 and 0,
respectively.

In more complex cases it may be that A(q) is a sum of operators, all of
which have the same spatial function F(q)(t), but all of which do not evolve
at the same frequency under the transformation represented by Eq. [3].

For example, in the dipolar interaction there is a set of operators

I S I S I Sz z , ,+ − − +

which all have the same spatial dependence, but which, under the static
hamiltonian H0 = ωIIz + ωSSz, evolve at frequencies 0, –ωI+ωS and ωI–ωS

respectively.  To cope with situation such as these, Eq. [3] is modified to

exp exp expiH t A iH t i t Aq
p
q

p
q

p
0 0( ) −( ) = ( )( ) ( ) ( )∑ ω [4]

where the sum over p allows for the possibility that the A(q) is a sum of
operators Ap

q( ) each with its own associated frequency ω p
q( ) .

The hamiltonian must be hermetian, so it follows that for each operator
with a positive index q there must be one with a negative index, with the
two operators being related by

A Aq q( ) −( )[ ] =
†

[5]

where the dagger (†) indicates the adjoint.  For example



6–6

I I I Iz z
+ −[ ] = [ ] =

† †

Likewise for each F(q) there is an associated F(–q), related by F(–q) = F(q)*.  It
follows from these definitions that ω ωp

q
p
q−( ) ( )= − .

Substituting the expansion of Eq. [4] into the master equation (Eq. [2])
gives, after considerable manipulation,

d
d

T
Tσ σ ω ω ωt

t
A A t J i tp

q
p
q

p q p q
q q p

q
p
q

p
q( ) = − ( )[ ][ ] ( ) +( )( )( ) ( )

−
( ) ( ) ( )∑1

2 , , exp'
'

, , ' , '
, ' '

'
'
' [6]

where Jq q, '− ( )ω  is the Fourier transform of the correlation function Gq q, '− ( )τ

J G iq q q q, ' , ' exp− −
−∞

∞

( ) = ( ) −( )∫ω τ ωτ τd

and where the correlation function is defined as

G F t F tq q
q q

, '
'

−
( ) ( )( ) = ( ) −( )τ τ [7]

6.2.2 Simplification by neglecting cross correlation and non-secular
terms

The relaxation behaviour predicted by Eq. [6] depends on the correlation
function between all possible interactions i.e. all possible pairs q,q'.
However, as has been seen above, it is often the case – or can be assumed to
be the case – that there is no correlation between the fluctuations of
different terms in the random hamiltonian; in other words, cross correlation
can be ignored.

If cross correlation is indeed ignored, then the only non-zero correlation
functions are ones with the same index q for both functions, i.e.

F t F tq q( ) ( )( ) −( )* τ
By definition, F(–q) = F(q)*, this non zero correlation function can be written

F t F tq q( ) −( )( ) −( )τ
which, from Eq. [7] is Gq q, '−  with q' = –q, i.e. Gq,q

In Eq. [6] there is a complex exponential which causes a phase oscillation

exp '
'i tp

q
p
qω ω( ) ( )+( )( )

If cross correlation is ignored, q ' = –q , and as ω ωp
q

p
q−( ) ( )= −  this term

becomes

exp exp' 'i t i tp
q

p
q

p
q

p
qω ω ω ω( ) −( ) ( ) ( )+( )( ) = −( )( )

If ω p
q( )  and ω p

q
'

( )  differ significantly, then this terms causes a rapid phase
oscillation so the term will not contribute to relaxation, simply as it is
constantly changing sign.  The terms which will contribute are those with
ω ωp

q
p
q( ) ( )= ' , for which there is no phase oscillation.  This condition is only

met if p = p'.

Terms which satisfy this restriction are termed secular contributions (as
opposed to the remainder which are non-secular).  Thus, retaining only the
secular terms and ignoring cross correlation simplifies Eq. [6] to
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d
d

T
Tσ σ ωt

t
A A t Jp

q
p

q

p q
q q p

q( ) = − ( )[ ][ ] ( )( ) −( ) ( )∑1
2 , ,'

,
, [8]

6.2.3 Relaxation of individual operators

As was described in Section 6.1.2, it is common to expand the density
operator is expanded in terms of a basis of operators, Bi,

σ t b t Bi i
i

( ) = ( )∑
where the coefficients bi carry the time dependence.

Evolution under pulses and delays causes the operators to transform into
one another.  It would be useful to have a similar way of handling the effect
of relaxation on the operators.  In such an approach, each operator would
relax in a characteristic way, perhaps being transferred to other operators.
The theory would predict these rate constants for self relaxation and for
transfer to other operators.

Such a way of treating the motion of operators under the influence of
relaxation has already been introduced as the Solomon equations.  For
example the equation

d

d
z

z z

I I

t
R I I S Sz

I z IS z

−( )
= − −( ) − −( )

0
0 0σ

says that Iz relaxes with a rate constant RI and that Sz is transferred to Iz with
a rate constant σIS.  The aim is to use the master equation, Eq. [8], to
produce similar equations for any operator, Bi.

Suppose that the density operator just contains a single operator, B1, with
coefficient b1(t).  To use Eq. [8] the density operator has to be transformed
to the interaction representation

σ σ

ω

T t iH t t iH t

iH t b t B iH t

b t B i t

( ) = ( ) ( ) −( )
= ( ) ( ) −( )
= ( ) ( )

exp exp

exp exp

exp

0 0

0 1 1 0

1 1 1

where it has been assumed that under this transformation the operator B1

acquires a phase modulation at a characteristic frequency ω1.  The
exponential term can be merged into the coefficient by defining

b t b t i t1 1 1' exp( ) = ( ) ( )ω
so that

σ T t b t B( ) = ( )1 1'

The right-hand side of Eq. [8] becomes

− ( )[ ][ ] ( )( ) −( ) ( )∑1
2 1 1A A b t B Jp

q
p

q

p q
q q p

q, , ''
,

, ω

The effect of the double commutator will, in general, be to transform the
operator B1 into other operators; there will be some coefficient for this
transfer, depending on the details of the operators and the spectral densities.
In general, the result can be written
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c b t B c b t B c b t B11 1 1 12 1 2 13 1 3' ' '( ) + ( ) + ( ) +K

where c1j is the coefficient for the transfer of operator 1 to operator j.

So Eq. [8] becomes

  

d
dt

b t B c b t B c b t B c b t B

c b t Bj
j

j

1 1 11 1 1 12 1 2 13 1 3

1 1

' ' ' '

'

( )( ) = ( ) + ( ) + ( ) +

= ( )∑

K

However, in general the density operator will not start out as just consisting
of a single operator B1, but will be a sum of many operators

σ T t b t B b t B b t B

b t Bi i
i

( ) = ( ) + ( ) + ( )
= ( )∑

1 1 2 2 3 3' ' '

'

K

Each of these operators can be transformed into any other operator by the
action of the double commutators, and if, as above, the coefficient for
transfer of operator Bj into operator Bi is cji the result is

d
dt

b t B c b t B c b t B c b t B

c b t B c b t B c b t B

c b t B c b t B c b

i i
i

' ' ' '

' ' '

' ' '

( )





= ( ) + ( ) + ( ) +

+ ( ) + ( ) + ( ) +
+ ( ) + ( ) +

∑ 11 1 1 12 1 2 13 1 3

21 2 1 22 2 2 23 1 3

31 3 1 32 3 2 33 3

K

K

tt B

c b t Bji j
i j

i

( ) +

= ( )∑
3 K

'
,

This begins to look like a Solomon equation, but is rather complex as it has
a sum of derivatives on the left.  To pick out just one of these, say that of the
operator Bk, both left and right hand sides are multiplied by the operator Bk

†

and the trace taken

d
d

Tr Tr
t

b t B B c b t B Bj k j
j

ji j
i j

k i' '†

,

†( ) { }





= ( ) { }∑ ∑

The operators are assumed to be orthogonal and to have a constant
normalization factor, β:

Tr    if     =   if B B p q p qp q
†{ } = ≠ =0 β

The β cancel and so the differential equation becomes

d
dt

b t c b tk jk j
j

' '( )( ) = ( )∑ [9]

This is a Solomon-type equation.  What it says is that if the rate of change
of the "amount" of operator Bk, bk(t), depends on the amounts of all other
operators Bj, bj(t), present.  The rate constant for transfer of operator Bj into
operator Bk is given cjk.

The rate constant cjk is simply found by computing

c B A A B Jjk k p
q

p
q

j
p q

q q p
q=

1
Tr

β
ω†

'
,

,, ,( ) − [ ][ ] ( )
















( ) −( ) ( )∑1

2 [10]
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In words, what this means that starting with a single operator Bj it is seen
how this operator is transformed into other operators by the double
commutators; from the resulting set of operators, just the component of Bk is
picked out.

A knowledge of the cjk rate constants gives a complete set of Solomon
equations and so a complete description of the relaxation behaviour of the
set of operators.  In practice, therefore, the theory is used to calculate these
cjk rather than the relaxation of an arbitrary density operator.

6.2.3.1 Time dependence

Equation [9] is written in the interaction representation, with the coefficients
bi'(t) having a phase oscillation due to the evolution of the operators under
the static hamiltonian.

b t b t i ti i i' exp( ) = ( ) ( )ω [11]

The aim is now to separate the evolution due to relaxation from that due to
evolution under the static hamiltonian.  Starting from Eq. [9] the
coefficients bi'(t) are replaced by those from Eq. [11]

d
d

d
d

d
d

d
d

t
b t c b t

t
b t i t c b t i t

b t

t
i t b t i i t c b t i t

b t

t
b

k jk j
j

k k jk j j
j

k
k k k k jk j j

j

k
k

' '

exp exp

exp exp exp

( )( ) = ( )

( ) ( )( ) = ( ) ( )
( ) ( ) + ( ) ( ) = ( ) ( )
( ) = −

∑

∑

∑

ω ω

ω ω ω ω

tt i c b t i tk jk j j k
j

( ) + ( ) −( )( )∑ω ω ωexp [12]

Equation [12] can be interpreted in the following way.  The first term on the
right describes the phase evolution of the operator Bk due to the static
hamiltonian; it has nothing to do with relaxation.  The sum of terms on the
right gives the rate of relaxation-induced transfer from operator Bj to Bk,
with rate constant cjk.  However, each term on the right includes a phase
oscillation at (ωj – ωk); such terms will not be effective at transferring Bj to
Bk unless (ωj – ωk) = 0 so that this phase oscillation goes away.  Unless this
is the case, the sign of the relaxation terms will change rapidly (much more
rapidly than the rather slow rate of relaxation) and so the net effect will be
zero.

For example, suppose that the two operators involved are I+ and S+; the
characteristic frequencies are therefore ω I and ωS (the two Larmor
frequencies), and as these are not the same any relaxation induced transfer
between the two operators which in principle might take place will actually
have no net effect.  In contrast the two operators Iz and Sz which both have
characteristic frequencies of zero can have relaxation induced transfer
between them (just as has been seen in the Solomon equations).

So, Eq. [12] can be written
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d
d

b t

t
b t i c b tk

k k j k j
j

( ) = − ( ) + ( )∑ω ' '
'

[13]

where the sum over j' is taken to include only those terms for which ωj' = ωk.
Concentrating on just the relaxation parts of the equation it is possible to
write Eq. [13] in terms of the operators, rather than their coefficients, as was
done in the case of the Solomon equations

d
d
B

t
c Bk

j k j
j

= ∑ ' '
'

As before, it is important to remember that this equation is just a short hand
– it is not the operators that are changing with time, but their contributions
to the density operator.

6.2.4 Superoperators

Often, it is acceptable to think of relaxation and evolution under the static
hamiltonian as being separate, even though in reality they are clearly taking
place at the same time.  However, there are occasions on which it is
essential to consider the two processes acting at the same time.  Essentially,
this is what a complete set of equations like Eq. [13] (for all operators Bk)
will do.

A convenient way of expressing such equations is to use the idea of
superoperators.  The starting point is the equation of motion of the density
operator:

d
d
σ σt

t
i H t

( ) = − ( )[ ],

For such an equation, it is usual to think of σ  and H as being matrices
expressed in some basis of wavefunctions.  However, if σ is expressed as a
linear combination of operators, as in the product operator formalism, it is
then natural to think of σ as a (column) vector of the coefficients the
individual operators.

The equation of motion is then written

d
d
σ σt

t
iH t

( ) = − ( )ˆ̂ [14]

where ˆ̂H  is the hamiltonian superoperator; this can be thought of as a
matrix.  Formally, the superoperator is defined as a commutator:

ˆ̂ ,H H H Hσ σ σ σ= [ ] = −
If H is time independent the solution to Eq. [14] is

σ σt iHt( ) = −



 ( )exp ˆ̂ 0

Relaxation can be added to Eq. [14] by introducing a relaxation

superoperator ˆ̂Γ
d

d eq

σ σ σ σt

t
iH t t

( ) = − ( ) − ( ) −{ }ˆ̂ ˆ̂Γ

where ˆ̂Γ  is defined via
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ˆ̂ , ,'
,

,Γσ σ ωT Tt A A t Jp
q

p
q

p q
q q p

q( ) = ( )[ ][ ] ( )( ) −( ) ( )∑1
2

In the case that σ is written as a vector of operators, ˆ̂Γ  will be a matrix with
the elements cjk given by Eq. [10].

6.3 Example calculations

6.3.1 One spin with random field

The simplest case to consider is a single spin experiencing a random field in
the x, y and z directions given by the hamiltonian

H t t I t I t Ix x y y z z1( ) = ( ) + ( ) + ( )ω ω ω

It will be convenient to re-express the Ix and Iy operators in terms of the
raising and lowering operators, to give

H t t I I t I I t I

I t i t I t i t t I

x y i z z

x y x y z z

1
1
2

1
2

1
2

1
2

1
2

1
2

( ) = ( ) +[ ] + ( ) −[ ] + ( )

= ( ) − ( )[ ] + ( ) + ( )[ ] + ( )

+ +

+ −

ω ω ω

ω ω ω ω ω

– –

From this, three separate terms are identified

q A(q) F(q)(t) ω(q)

0 Iz ω z t( ) 0

1 I+
1
2

1
2ω ωx yt i t( ) − ( ) –ωI

–1 I–
1
2

1
2ω ωx yt i t( ) + ( ) +ωI

where the static hamiltonian, H0, has been taken as ωIIz, so that

 exp exp exp exp expiH t I iH t i t I iH t I iH t II z z0 0 0 0( ) −( ) = ( ) ( ) −( ) =± ±m ω           

For each value of q there is just one term, so the index p in Eq. [8] is not
needed.

The correlation function G11(τ) is

G F t F t

t i t t i t

t t i t t i t t t t

x y x y

x x x y y x y y

11
1 1

1
2

1
2

1
2

1
2

1
4

τ τ

ω ω ω τ ω τ

ω ω τ ω ω τ ω ω τ ω ω

( ) = ( ) +( )

= ( ) − ( )[ ] +( ) + +( )[ ]
= ( ) +( ) + ( ) +( ) − ( ) +( ) + ( ) +

( ) −( )

ττ( )[ ]
If cross correlation between the x and y components is ignored, then the
ensemble averages of the second and third terms is zero.  The first and
second terms will be written

ω ω τ ω τ ω ω τ ω τx x x y y yt t g t t g( ) +( ) = ( ) ( ) +( ) = ( )2 2        

So that

G gx y11
1
4

2 2τ ω ω τ( ) = +[ ] ( )
The corresponding spectral density is

J jx y11
1
4

2 2ω ω ω ω( ) = +[ ] ( )
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The correlation function G–1,–1(τ) is the same as G11(τ).

G00(τ) is similarly given by

G F t F t

t t

g

z z

z

00
0 0

2

τ τ

ω ω τ

ω τ

( ) = ( ) +( )
= ( ) +( )
= ( )

( ) ( )

and so J jz00
2ω ω ω( ) = ( ) .

The approach will be to start with Eq. [10]

c B A A B Jjk k p
q

p
q

j
p q

q q p
q=

1
Tr

β
ω†

'
,

,, ,( ) − [ ][ ] ( )
















( ) −( ) ( )∑1

2 [10]

and to put each operator Bj in turn into this relationship.  To start with, just
the part in the round brackets will be evaluated

Motion of Iz

The term to calculate is

− [ ][ ] ( )( ) −( ) ( )∑1
2 A A I Jp

q
p

q
z

p q
q q p

q, ,'
,

, ω

where q = 0, +1, –1; the index p is not used.  The following terms are found

q I I I J I J

q I I I J I I J I J

q I I I J

z z z z

z I I z I

z I

= [ ][ ] ( ) = [ ] ( ) =

= [ ][ ] −( ) = −[ ] −( ) = −( )
= − [ ][ ] ( )

− + − +

+ −

0 0 0 0 0

1 2

1

00 00

11 11 11

1 1

 :  

 :  

 :  

, , ,

, , ,

, , – –

ω ω ω

ω == [ ] ( ) = ( )+ −
− − − −I I J I JI z I, 1 1 1 12ω ω

The double commutators generate no new operators, so all that happens is
that Iz relaxes on its own.  It is not therefore necessary to go through the
formal calculation of the trace.  Rather, the coefficient c00 can be picked out
as:

c J J

J J

j j

j

I I

I I

x y I x y I

x y I

00
1
2 11 1 1

11 11

1
4

2 2 1
4

2 2

1
2

2 2

2 2= − −( ) + ( ){ }
= − ( ) − ( )
= − +[ ] ( ) − +[ ] ( )
= − +[ ] ( )

− −ω ω

ω ω

ω ω ω ω ω ω

ω ω ω

where is has been assumed that the spectral densities at ±ω0 are the same.
The Solomon equation is therefore

d
d

z
z

I

t
c I

R Iz z

=

= −

00

where Rz, the longitudinal relaxation rate constant is

R jz x y I= +[ ] ( )1
2

2 2ω ω ω

As expected, the rate of longitudinal relaxation depends on the size of
transverse fields and the spectral density at the Larmor frequency.
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Motion of I+

The term to calculate this time is

− [ ][ ] ( )( ) −( )
+

( )∑1
2 A A I Jp

q
p

q

p q
q q p

q, ,'
,

, ω

where q = 0, +1, –1; the index p is not used.  The following terms are found

q I I I J I I J J I

q I I I J I

q I I I J I I

z z z

I

I z

= [ ][ ] ( ) = −[ ] ( ) = ( )

= [ ][ ] −( ) = [ ] =

= − [ ][ ] ( ) = −[ ]

+ + +

−
+ +

+ + +

0 0 0 0

1 0 0

1 2

00 00 00

11

1 1

 :  

 :  

 :  

, , ,

, , ,

, , ,

–

– – –

ω

ω JJ I JI I− − + − −( ) = ( )1 1 1 12ω ω

The double commutators generate no new operators, so as before all that
happens is that I+ relaxes on its own. The coefficient, that is the rate constant
for this process, can be extracted by inspection as

c J J

j j

I

z x y I

11
1
2 00 1 1

1
2

2 1
4

2 2

0 2

0

= − ( ) + ( )[ ]
= − ( ) − +[ ] ( )

− − ω

ω ω ω ω

The Solomon-type equation is therefore

d
d

+
+ +

I

t
c I R It= = −11

where Rt, the transverse relaxation rate constant is

R j jz x y It = ( ) + +[ ] ( )1
2

2 1
4

2 20ω ω ω ω

6.3.1.1 Interpretation

It is interesting to compare the longitudinal and transverse relaxation rate
constants

R jz x y= +[ ] ( )1
2

2 2
0ω ω ω

R j j j Rz x y z zt = ( ) + +[ ] ( ) = ( ) +1
2

2 1
4

2 2
0

1
2

2 1
20 0ω ω ω ω ω

Longitudinal relaxation only depends on the spectral density at the Larmor
frequency, but transverse relaxation depends on the spectral density both at
the Larmor frequency and at zero frequency.

The two contributions to transverse relaxation are quite distinct.
Longitudinal random fields give a contribution which depends on the
spectral density at zero frequency; this is called the secular contribution as
no energy change is involved.  Transverse random fields give a contribution
which depends on the spectral density at the Larmor frequency; this is called
the non-secular contribution as changes of energy are involved as the spins
flip.

Furthermore, longitudinal relaxation is only brought about by transverse
magnetic fields, but both transverse and longitudinal magnetic fields give
rise to transverse relaxation.  The longitudinal fields are associated with the
spectral density at zero frequency.

The secular part of transverse relaxation
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Recall that transverse magnetization is due to the presence of a coherence in
the system; this coherence has a phase oscillation at the Larmor frequency
and this in turn is what gives rise to the measured precession of transverse
magnetization at the Larmor frequency.  Each spin experiences the applied
magnetic field along the z-direction plus any local random field, ωz(t).  As a
result, the frequency of the phase oscillation of the contribution to the
coherence from each spin has a spread of values across the sample.  As time
proceeds, therefore, these individual contributions get out of phase with one
another and so the coherence (and hence the transverse magnetization)
decays.

For such a mechanism to be effective at dephasing coherence it is not
necessary for there to be any time variation in the fields along the z-
direction, all that is required is that there is a distribution of fields across the
sample.  However, the dephasing caused by a completely static distribution
of fields is not classed as relaxation since the dephasing could be reversed
by the application of a 180° refocusing pulse.  Indeed, this kind of
dephasing is exactly that which occurs when a field gradient pulse is
applied.  Relaxation is a dissipative irreversible process whose effects
cannot be undone with pulses.

So, for a distribution of fields in the z-direction to be effective at causing
transverse relaxation these fields must be time dependent so that their effect
cannot be reversed by a refocusing pulse.  The time dependence has a
different role in transverse and longitudinal relaxation.  In the latter, the
time dependence is needed to cause transitions – in the former, it is needed
to inhibit refocusing.

The secular part of transverse relaxation depends on j(0) which = 2τc.
So, as the correlation time gets shorter the rate of transverse relaxation
decreases.  To understand why this is it is useful to imagine first that the
spins are frozen and not moving.  The distribution of fields across the
sample will give rise to a range of different Larmor frequencies and as a
result the line observed in the spectrum will be broad.

Now suppose that the spins start to move; they will jump from position to
position, experiencing a different field each time (just like chemical
exchange, but between very many sites).  As the jumping rate becomes
comparable with the original linewidth, the line will start to narrow (again,
just like exchange narrowing).  What is happening is that there are now so
many jumps that all the spins are beginning to see the same average
frequency.  As the jumps become much faster than the original linewidth the
line is narrowed drastically; however, there is still a residual width which
depends on the rate of jumping and the original linewidth for the static
arrangement.

For typical NMR samples the linewidth of the frozen sample would be
rather large (tens of kHz, or more).  However, typical correlation times for
liquids are in the ps to ns range; these times are an indication of the time
between jumps.  With such fast motion compared to the frozen linewidth,
the line observed in the liquid is very much narrower than in the frozen
sample.  Nevertheless, the extent of narrowing depends on the rate of
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jumping, and this is why the relaxation rate constant is proportional to 2τc.
The smaller τc, the faster the jumping and the narrower the line.

The non-secular part of transverse relaxation

Longitudinal relaxation is associated with changes in populations, and hence
transitions between spin states.  Such processes involve a transfer of energy
between the spins and the lattice.  It is also clear that a transition from one
spin state to another will cause an interruption in the phase of the
contribution of a particular spin to the overall coherences.  Thus, such
transitions also lead to transverse relaxation.

The non-secular contribution to the transverse rate constant is 1
2 Rz .  The

half arises because one spin flipping causes the population difference, and
hence the z-magnetization, to change by two units.  Spin flips are thus twice
as effective at causing longitudinal relaxation as they are at causing
transverse relaxation.

6.3.2 Variation with correlation times

For simplicity, it will be assumed that

ω ω ω ωx y z
2 2 2= = = R

2

In which case

R j R j jz I I= ( ) = ( ) + ( )ω ω ω ω ωR
2

t R
2

R
2          1

2
1
20

The simplest model is to assume that the correlation function is exponential,
g(t) = exp(–τ/τc); this gives a lorentzian spectral density

j
c

ω τ
ω τ

( ) =
2

1+
c
2 2

The relaxation rate constants are therefore

R Rz
I c I c

= = +










2
1+

          
1+

c R
t R c

cτ ω
ω τ

ω τ τ
ω τ

2

2 2
2

2 2

Several important points can be drawn from these relationships.

The first is that the rate of transverse relaxation is always greater than or
equal to that of longitudinal relaxation.  This follows as the difference

R Rz
I c

I c
t

c R

1+
− = τ ω ω τ

ω τ

2 2 2

2 2 [15]

is clearly always positive.

6.3.2.1 Extreme narrowing

The extreme narrowing or fast motion limit is when the correlation time is
so short that ω0τc << 1.  If this is the case then 1+ ω τ0

2 2 1c ≈ , and the spectral
density is just 2τc at all frequencies.  The rate constants for longitudinal and
transverse relaxation are equal in this limit:

R Rzt
ex. narrow ex. narrow

c R2= = τ ω 2

As the correlation time increases out of the extreme narrowing limit, the
transverse relaxation rate constant becomes greater than the longitudinal
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rate constant, as can be seen from Eq. [15].

For a 500 MHz spectrometer, the extreme narrowing limit implies a
correlation time of much less than 300 ps.  A small molecule in a non-
viscous solvent might have a correlation time of 10 ps or less, which would
place the molecule easily in the extreme narrowing limit.

6.3.2.2 Spin diffusion

The spin diffusion or slow motion limit is when ω0τc >> 1 so that the
spectral density at zero frequency is much larger that that at the Larmor
frequency.  In such a case the transverse relaxation rate constant is
dominated by the term which depends on j(0)

Rt
spin diff.

R c= ω τ2

The longitudinal rate constant goes on getting smaller and smaller as the
correlation time increases, in principle becoming vanishingly small in the
limit ω0τc >> 1.  There is thus a strong contrast in the behaviour of the
longitudinal and transverse rates.

This difference comes about because longitudinal relaxation requires
motion at the Larmor frequency but transverse relaxation can be caused
either by motion at zero frequency or at the Larmor frequency.

As was noted in Section 5.2.3, for a given frequency the spectral density
is a maximum when ω0τc ≈ 1.  Therefore the longitudinal relaxation rate
constant is a maximum when the correlation time is such that ω0τc ≈ 1 .

1 2 3 4

Rt

Rz

ω τc

2

0(      )

The longitudinal and transverse relaxation rate constants as a function of the correlation time for fixed
Larmor frequency.  For short correlation times the two rate constants are equal, but as the correlation
time increases the longitudinal rate constant goes through a maximum and then falls away.  In contrast,
the transverse rate constant continues to increase.

6.3.3 More than one spin with random field

Suppose that there are two spins, each experiencing a random field so that
the hamiltonian is

H t t I t I t I t S t S t SI x x I y y I z z S x x S y y S z z1( ) = ( ) + ( ) + ( ) + ( ) + ( ) + ( )ω ω ω ω ω ω, , , , , ,

which can be written

H t I F I F F I S F S F F SI I I z S S S z1
1 1 0 1 1 0( ) = + + + + ++ ( ) − −( ) ( ) + ( ) − −( ) ( )
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where

  
F t F t i tI S z

I S
I S x

I S
y
I S

,
,

,
, ,0 1 1

2
1
2

( ) ( ) ±( ) ( ) ( )= ( ) = ( ) ( )[ ]ω ω ω            m

The I spin operators in the hamiltonian are the only ones which can affect I
spins operators in the density operator and likewise for S spin operators.
So, the set of double commutators

− [ ][ ] ( )( ) −( ) ( )∑1
2 A A I S Jp

q
p

q

p q
q q p

q, ,'
,

,α β ω  ,

where Iα and Sβ are any I and S spin operators, can be separated into two
parts

S A A I J

I A A S J

p
I q

p
I q

p q
I q q p

I q

p
S q

p
S q

p q
S q q p

S q

β α

α β

ω

ω

( ) − [ ][ ] ( )






+( ) − [ ][ ] ( )






( ) −( ) ( )

( ) −( ) ( )

∑

∑

1
2

1
2

,
'
,

,
, ,

,

,
'

,

,
, ,

,

, ,

, ,

[16]

The sub and superscript labels I and S on the operators, spectral densities
and frequencies distinguish those for the I spins from those for the S spins.

As an example of using this separation, suppose that the relaxation
behaviour of the operator product I+Sz is required.  From Eq. [16]

S A A I J

I A A S J

z p
I q

p
I q

p q
I q q p

I q

p
S q

p
S q

z
p q

S q q p
S q

( ) − [ ][ ] ( )






+( ) − [ ][ ] ( )






( ) −( ) + ( )

+ ( ) −( ) ( )

∑

∑

1
2

1
2

,
'
,

,
, ,

,

,
'

,

,
, ,

,

, ,

, ,

ω

ω

The first bracket has already been calculated in the previous section when
the relaxation of I+ was considered; likewise the second bracket was also
calculated above when the relaxation of Sz was considered.  So, the
relaxation rate constants for I+Sz is just the sum of these two terms

R I S R I R S

j j j

z z

z
I

x
I

y
I

I x
S

y
S

S

( ) ( ) ( )+ +

( ) ( ) ( ) ( ) ( )

= +

= ( ) ( ) + ( ) + ( )





( )







+ ( ) + ( )





( )







1
2

2
1
4

2 2
1
2

2 2
0ω ω ω ω ω ω ω

In fact, this approach will work for any operator with any number of terms
in it.  The overall relaxation rate constant will be the sum of the rate
constants for each individual operator.   Note that, with an operator such as
I+Sz, the result is a mixture of longitudinal and transverse relaxation rates.

A second example is a double quantum coherence: I+S+

R I S R I R S

j j

j j

z
I

x
I

y
I

I

z
S

x
S

y
S

S

( ) ( ) ( )+ + + +

( ) ( ) ( )

( ) ( ) ( )

= +

= ( ) ( ) + ( ) + ( )





( )







+ ( ) ( ) + ( ) + ( )





( )

1
2

2
1
4

2 2

1
2

2
1
4

2 2

0

0

ω ω ω ω

ω ω ω ω







The relaxation does not depend on the spectral density at the sum of the
Larmor frequencies of I and S.
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6.3.4 Two spins with dipolar interaction

The dipole relaxation mechanism was described in Section 5.3.1;
essentially, one spin gives rise to a magnetic field at a second spin due to the
magnetic dipole that the former possesses.  The interaction depends on the
distance between the two spins, r, and the angles that the vector between
them makes to the direction of the applied magnetic field.  These angles are
the usual θ and φ used in spherical polar coordinates and illustrated
opposite.

The dipole hamiltonian can be separated into five terms with index q = 0,
±1, ±2

q A(q) F(q)

0 I S I S I Sz z − +( )+ − − +
1
4 b 1 3 2−( )cos θ

±1 I S I Sz z± ±+ − ( )[ ]3
2 b isin cos expθ θ φm

±2 I S± ±   − ( )[ ]3
4

2 2b isin expθ φm

where

  
b

r
I S= µ γ γ

π
0

34
h

in which γI and γS are the gyromagnetic ratios.  The angles and the distance
can, in principle, all change randomly with time; it will be assumed that r is
fixed and that the angles change due to molecular tumbling.  It is clear from
the presence of operators such as Iz and I+ that the hamiltonian will give rise
to longitudinal and transverse relaxation.  However, as will be seen, the
really important thing about the dipole interaction is that it gives rise to
cross relaxation as was described in Section 5.1.3 .  The details of how this
comes about will be seen in this section.

The operators A(q) evolve under the influence of the static hamiltonian at
characteristic frequencies, as given in Eq. [4].

exp exp expiH t A iH t i t Aq
p
q

p
q

p
0 0( ) −( ) = ( )( ) ( ) ( )∑ ω [4]

Taking the static hamiltonian to be ωIIz + ωSSz the operators A(q) separate out
into the Ap

q( ), each with its associated frequency ω p
q( ) , according to

q p Ap
q( ) ω p

q( )

0 0 I Sz z 0

+0 1 − + −
1
4 I S –ωI + ωS

–0 1 − − +
1
4 I S ωI – ωS

±1 1 I Sz ± ±ωS

±1 2 I Sz± ±ωI

x
y

z

φ

θ

The dipole interaction depends
on the angles θ and φ which are
made by the vector joining the
two nuclei.  The static magnetic
field is assumed to be along the
z-axis.
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±2 I S± ±   m (ωI + ωS)

The notation q = ±0 is used to indicate that the operator with q = +0 is the
adjoint of the one with q = –0, as required by Eq. [5].  The operators with q
= 2 evolve at only one frequency, so the index p is not required for these;
likewise for q = –2.

6.3.4.1 Correlation functions

If the calculation is restricted to secular contributions (Section 6.2.2), the
required correlation functions are

G F t F tq q
q q

, τ τ( ) = ( ) −( )( ) −( )

and these will be written as

G F t F t g F gq q
q q q

, τ τ τ( ) = ( ) ( ) ( ) = ( )( ) −( ) ( )2

where g(τ) is the reduced correlation function.  The average of the square of
F(q) is computed by averaging over the ensemble.  If it is assumed that all
angles are equally likely, i.e. all orientations are equally probable, then this
averaging is equivalent to integrating over all angles θ and φ

F F Fq q q( ) ( ) −( )

==

= ∫∫
2

0

2

0

1
4π

θ θ φ
φ

π

θ

π

sin d d

where sinθ θ φd d  is the volume element in spherical polar co-ordinates.
The division by 4π is needed for normalization as

sinθ θ φ π
φ

π

θ

π

d d
==
∫∫ =

0

2

0

4

For q = 0 the integral is

F b b

b

0 2 2 2

0

2

0

4
5

2

1
4

1 3 1 3( )

==

= −( ) −( )

=

∫∫π
θ θ θ θ φ

φ

π

θ

π

cos cos sin d d

The integral is tedious to evaluate by hand – Mathematica or some similar
program makes short work of it, though.

Similar calculations give the following results for the correlation
functions and spectral densities.

q
F q( )2 Jq q, ω( )

0 4
5

2b 4
5

2b j ω( )
±1 3

10
2b 3

10
2b j ω( )

±2 3
10

2b 3
10

2b j ω( )

From now on, for brevity, the spectral densities Jq q, ω( )  will be written as
Jq ω( ) .



6–20

6.3.4.2 Relaxation of Iz

The relaxation behaviour of the Iz operator is determined by evaluating

− [ ][ ] ( )( ) −( ) ( )∑1
2 A A I Jp

q
p

q
z

p q
q p

q, ,'
,

ω

where the restriction to secular terms has been assumed.  The spectral
densities Jq ω( )  have been computed in the previous section, so the problem
reduces to evaluating the double commutator for all the relevant operators.

In evaluating the commutators the results given in Section 6.2.3 will be
useful.  In addition, the following commutators will be needed:

I S I S I S I S I S I Sz z z z+ − + + + − −[ ] = − [ ] = +– , ,

The following table shows the evaluation of all the double commutators

q p A A Ip
q

p
q

z
( ) −( )[ ][ ], ,'

A Qp
q( )[ ], result

0 0 I S I S Iz z z z z, ,[ ][ ] I Sz z ,0[ ] 0

+0 1 1
16 I S I S Iz+ − − +[ ][ ], , 1

16 I S I S+ − − +[ ], 1
16 I Sz z−( )

–0 1 1
16 I S I S Iz− + + −[ ][ ], , − [ ]− + + −

1
16 I S I S, − − +( )1

16 I Sz z

1 1 I S I S Iz z z+ −[ ][ ], , I Sz +[ ],0 0

1 2 I S I S Iz z z+ [ ][ ], ,–
I S I Sz z+[ ], –

1
2 Iz

–1 1 I S I S Iz z z− +[ ][ ], , I Sz −[ ],0 0

–1 2 I S I S Iz z z− +[ ][ ], , −[ ]− +I S I Sz z, 1
2 Iz

2 I S I S Iz+ + − −[ ][ ], , I S I S+ + − −[ ], I Sz z+( )
–2 I S I S Iz− − + +[ ][ ], , −[ ]− − + +I S I S, I Sz z+( )

The final result is therefore

−

−( ) − +( ) + −( ) + −( )
+ ( ) + −( )
+ +( ) +( ) + +( ) − −

+ + − −

− −

− −

1
2

1
16 0 0

1
16 0 0

1
2 1 1

1
2 1 1

2 2 2 2

I S J I S J

I J I J

I S J I S J

z z I S z z I S

z I z I

z z I S z z I

, ,

, ,

, ,

ω ω ω ω

ω ω

ω ω ω ωSS( )



















where the appropriate spectral densities have been inserted.  Assuming that

J J Jq q q q qω ω ω( ) = ±( ) = ±( )− −, ,

gives

− −( ) + ( ) + +( ){ }
− +( ) − −( ){ }

I J J J

S J J

z I S I I S

z I S I S

1
16 0

1
2 1 2

2
1

16 0

ω ω ω ω ω

ω ω ω ω

Inserting the explicit expressions for the spectral densities, this gives
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− −( ) + ( ) + +( ){ }
− +( ) − −( ){ }
= − −( ) + ( ) + +( ){ }
− +( ) −

I j j j

S j j

I j j j b

S j

z I S I I S

z I S I S

z I S I I S

z I S

1
16
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3
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1
16
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1
20

3
20

3
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3
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ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω

ω ω 11
20

2j bI Sω ω−( ){ } [17]

An exactly analogous calculation for the operator Sz gives

− −( ) + ( ) + +( ){ }
− +( ) − −( ){ }

S j j j b

I j j b

z I S S I S

z I S I S

1
20

3
20

3
10

2

3
10

1
20

2

ω ω ω ω ω

ω ω ω ω
[18]

which is easily obtained by swapping the indices I and S.

From Eq. [17] it is clear that the term multiplying Iz is the relaxation rate
constant for Iz and the term multiplying Sz is the rate constant for transfer
from Sz to Iz.  Likewise in Eq. [18] the first term is the relaxation rate
constant for Sz and the second is the term for transfer of Iz to Sz.  These
equations imply that Iz and Sz both relax on their own and are interconverted
by relaxation according to the pair of differential equations
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These are precisely the Solomon equations found in Section 5.1.3 . The
difference is that it now it has been possible to identify the contributions to
the self and cross relaxation rate constants.

Alternatively, these equations can be written in terms of the Jq(ω) as

R J J J

R J J J

J J
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[19]

Interpretation

Referring to Eq. [19] it is seen that the spectral densities J1(ωI,S),
J0(ωI − ωS), and J2(ωI + ωS) all contribute to the self relaxation of the I and S
spin.  However, only the latter two spectral densities contribute to the cross
relaxation rate constant.  These two spectral densities are associated with the
terms in the hamiltonian I S± m , called the flip-flop terms as one spin flips one
way and the other flips the other, and the terms I S± ± , called the flip-flip and
flop-flop terms.  Dipole relaxation is almost unique in having these terms
present and hence giving rise to cross relaxation.  This is the reason why the
presence of a nuclear Overhauser effect, which requires there to be cross
relaxation, can almost always be associated with dipolar relaxation.
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Writing in the simplest spectral density function gives the following
expression for σIS
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If I and S are both the same nuclear species, say protons, it is safe to assume
that (ωI + ωS) = 2ωI and (ωI – ωS) = 0, giving the simpler expression
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The first thing to notice about this is that the cross-relaxation rate constant is
proportional to 1/r6.  Transient NOE experiments can be used to measure the
cross-relaxation rate constant (see Section 5.1.4) and so provided the
correlation time is known it is possible to determine the distance.  Typically
the correlation time is found from independent experiments, such as the
measurement of the carbon-13 relaxation times and NOE enhancements.
Alternatively, relative distances in the same molecule can simply be
determined from the ratio of cross-relaxation rate constants

σ
σ

IS

PQ

PQ

IS

r

r
=

6

6

This will work provided it is valid to assume that the motion of both spin
pairs I–S and P–Q can be modelled by a single correlation time (i.e. a rigid
molecule).  Note that as only dipolar relaxation contributes to the cross-
relaxation rate constant it does not matter if other mechanisms are acting.
These will alter the self relaxation rate constants, but not the cross-
relaxation rate constants.

In the extreme narrowing limit ωI,Sτc << 1 and so σIS simplifies to
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This is positive, resulting in a positive NOE enhancement i.e. the spin
receiving the enhancement will have its magnetization increased above the
equilibrium value.  This is typical of the NOE in small molecules.

In the spin diffusion limit the spectral density at 2ωI becomes negligible
and so
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This is negative, giving rise to negative NOE enhancements i.e. the spin
receiving the enhancement will have its magnetization reduced when
compared to the equilibrium value.

The self relaxation rate is

R
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which simplifies in the two limits to:
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In Section 5.1.4.2 it was shown that the steady-state NOE enhancement is

η σ
SS = IS

IR

If the relaxation is purely due to the dipole interaction between I and S, then
this enhancement is + 1

2  in the extreme narrowing limit and –1 in the spin
diffusion limit.

Somewhere in between the NOE enhancement goes to zero when the two
terms in the cross-relaxation rate constant and equal i.e.
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At a Larmor frequency of 500 MHz this zero crossing corresponds to a
correlation time of about 0.35 ns.  Such a correlation time is characteristic
of a medium-sized molecule such as a short peptide or oligo-saccharide
dissolved in water.

6.3.4.3 Relaxation of 2IzSz

As in the previous section, the process starts by evaluating
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Following through the same procedure as before gives
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there is no transfer to Iz or Sz.  The differential equation is thus
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Note that in the spin diffusion limit this rate tends to zero.

6.3.4.4 Relaxation of I+

Evaluating
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There are no transfer terms to other operators. The differential equation is
thus
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Just as in the random field case, the transverse relaxation rate constant
separates into two parts.  The second part is just half of the longitudinal rate
constant, RI.  The first part has a term which depends on the spectral density
at zero frequency and a term which depends on the spectral density at the
Larmor frequency of spin S.

This latter term is a little unusual.  It says that the relaxation of transverse
magnetization of spin I is affected by the spectral density at the Larmor
frequency of spin S .  The interpretation of this is that this latter spectral
density is associated with processes which involve the flipping of spin S
(terms such as IzS±).  As I is (dipolar) coupled to S, when the spin state of S
changes the field seen by the I spin changes, and so the precession
frequency of the I spin coherence changes.  These spin flips thus give rise to
a constantly varying local field at spin I which causes loss of phase
coherence amongst the spins which are contributing to the coherence.  The
term is secular from the point of view of the I spin as no energy is
transferred to or from it.

In terms of the reduce spectral densities the relaxation rate constant is
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6.3.4.5 Transverse cross relaxation

In contrast to the relaxation behaviour of Iz and Sz, there is no cross
relaxation transfer between I+ and S+; i.e. no transverse cross relaxation.
Such a transfer would come about through the following double
commutators
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However, none of these terms contribute as they are non-secular.  For
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example, in the first commutator the frequency associated with IzSz is 0,
whereas that associated with I–S+ is (–ω I + ωS).  The resulting term is
therefore rapidly oscillating and thus ineffective at causing relaxation.

There are two cases in which these terms become secular.  Firstly, when
ωI = ωS i.e. when the two spins are degenerate.  Secondly, when it appears
that the two spins have the same Larmor frequency.  The first case is not of
much interest as it would be impossible to detect the transfer of
magnetization between degenerate spins.  The latter case is important as it is
possible to make it appear that two spins have the same Larmor frequency
by spin locking their magnetization.

The simplest spin locking experiment involves a non-selective 90° pulse
about the y-axis followed by a period during which a strong radiofrequency
field is applied along the x-axis.  The field is sufficiently strong that for both
spins (which have different offsets) the effective field lies very close to the
x-axis.  The magnetization which is along the axis of the applied
radiofrequency field (here x) experiences no rotation from that field; viewed
in the laboratory frame the magnetization is precessing at the same rate as
the rotating field.  In the rotating frame, both appear static.  The
magnetization is said to be spin locked.

Since the magnetization from the two spins does not diverge while the
spin-locking field is on, it appears as if they have the same offset or Larmor
frequency.  Thus, transverse cross-relaxation can take place.  The results of
the cross relaxation can be observed by removing the spin-locking field and
then observing the FID in the usual way.

The experiments used to observe such transverse NOE enhancements, as
they are called, are generally referred to as ROESY experiments (or
sometime CAMELSPIN).  Both one- and two-dimensional versions of the
experiment are available.

Using the above double commutators, the cross-relaxation rate constant
is computed as

σ ωIS IJ Jtr = ( ) + ( ){ }1
2 1

1
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or, in terms of the reduced spectral densities

σ ωIS Ij j btr = ( ) + ( ){ }3
20

1
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The important point about this rate constant is that for all values of the
correlation time it is always positive.  Therefore the NOE enhancements are
always positive and there is no range of correlation times for which the
enhancement crosses zero.  ROESY has therefore proved to be a useful
technique for obtaining distance information on molecules for which,
because of their correlation times, the conventional NOE is close to zero.

Off-resonance ROESY

In practice it is difficult to use a sufficiently strong spin locking field that
the spin locking axis is in the transverse plane.  Rather, the axis will by
tilted up into the xz-plane.  The tile angle of the effective field, θ, depends
on the offset, Ω, and the radio frequency field strength ω1.

mτ
90°(y)

180°
S

(a)

(b)

mτ
90°(y)

x

x

One-dimensional ROESY
experiment.  The combination
of the selective 180° pulse and
the 90° pulse in (a) generates a
state in which the I spin is along
x and the S spin is along –x.
During the period of spin
locking transverse cross
relaxation can take place.
Sequence (b) generates the
reference spectrum without
cross relaxation; it is subtracted
from (a) to give the usual
difference spectrum.

t1
t2τmix

Two-dimensional ROESY
experiment which uses a period
of spin locking during the
mixing time.

1

eff

θ

ω

Ω
Ω
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tan sinθ ω θ ω θ ω= = = = +1 1
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When the spin locking field is applied, components of the magnetization
which are not parallel to the field are quickly dephased and lost.  Only the
part along the spin lock axis need be considered.

Magnetization which is spin locked about an axis tilted at angle θ will
have a transverse component proportional to sinθ  – this relaxes at the
appropriate rate for transverse magnetization, and a longitudinal component
proportional to cosθ – this relaxes at the longitudinal rate.  The rate constant
for the relaxation of spin locked magnetization thus depends on the rate
constants for both transverse and longitudinal magnetization and the angle
θ.

In an ROE experiment, the two spins which are cross-relaxing one
another will have different offsets, and thus have different tilt angles, θI and
θS.  It is the transverse components which undergo transverse cross
relaxation and the longitudinal components which undergo normal cross
relaxation.  To work out the effective cross relaxation rate of the spin locked
magnetization it is thus necessary to consider the two components
separately.

I

x

z

S

a

b θI

θS

I

S

c d

(a) (b)

Geometric constructions for the case where the spin locking axes of I and S are tilted to different
extents.  Case (a) is for transverse and (b) for longitudinal relaxation.

Referring to diagram (a), the transverse component of I, labelled a, is
proportional to sinθ I; this component cross relaxes with S with a rate
constant σt.  Any S magnetization generated in this process appears along
the x-axis, but only the component along the spin locking axis of S will
survive.  This component, labelled b, is proportional to sinθS.  The effective
transverse cross relaxation rate is thus sinθI sinθS σt.

Diagram (b) shows the longitudinal components.  c is the longitudinal
component of the I magnetization, and is proportional to cosθ I.  This
component cross relaxes with rate constant σl to give S magnetization.  The
component of this magnetization along the S spin lock axis, d , is
proportional to cosθS.  The effective longitudinal cross relaxation rate
constant is thus cosθI cosθS σl.

Overall, therefore, the cross relaxation rate constant of the spin locked
magnetization is given by

σtilted = sinθI sinθS σt + cosθI cosθS σl

Using a similar geometric construction it is possible to show that the self
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relaxation rate constant is

Rtilted,I = sin2θI Rt,I + cos2θI Rl,I

and likewise for S.

6.3.4.6 Relaxation of 2I+Sz

Evaluating
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there is no transfer to other terms.  The differential equation is thus
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It is interesting to compare this with the relaxation time constant for I+
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It is immediately clear that the antiphase term relaxes more slowly than the
inphase term; the difference is the term 1

2 1J Sω( ) which does not contribute
to the relaxation of the antiphase term.  The effect of this term was
commented on in the previous section.

There is another important feature of the difference between the
relaxation of inphase and antiphase terms.  For the antiphase term, any
additional longitudinal relaxation of the S spin, RS

addn., contributes directly to
the relaxation of the operator product 2I+Sz; the reasons for this were
discussed in Section 6.3.3.

R R RI S I S Sz z+ +
= +dipole addn.

Such longitudinal relaxation of spin S does not contribute to the relaxation
of I+.  As such extra relaxation of S is often found, in practice it is usually
the case that antiphase terms relax more quickly than inphase terms.

6.3.4.7 Relaxation of multiple quantum terms

Double quantum

Evaluating
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there is no transfer to other terms.  The differential equation is thus
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The rate constant depends on the spectral density at the Larmor frequencies,
and at the sum of these (in contrast to the random field case).  In the spin
diffusion limit, this rate constant becomes vanishingly small.  However,
other mechanisms which cause transverse relaxation of I or S will contribute
directly to the rate constant for the double quantum coherence.

Zero quantum

The rate constant is

R J J J

j j j b

I S I S S I

I S S I

+ −
= −( ) + ( ) + ( ){ }
= −( ) + ( ) + ( ){ }

1
16 0

1
4 1

1
4 1

1
20

3
40

3
40

2

ω ω ω ω

ω ω ω ω

6.3.5 Chemical shift anisotropy

As discussed in Section 5.3.2 the anisotropy of the chemical shift is a source
of fluctuating fields in all three directions.  The hamiltonian describing this
anisotropic shift is

H = − −( )γI B1 σ

where I is the vector of the three spin angular momentum operators and
likewise B is a vector giving the components of the applied field in the three
orthogonal directions

I B= { } = { }I I I B B Bx y z x y z, , , ,       

If the applied field is just along the z direction, then only the Bz component
of B is non-zero.

The chemical shift is described by the tensor σ , which can be thought of
as a 3×3 matrix with components σxx, σxy etc.

σ =














σ σ σ
σ σ σ
σ σ σ

xx xy xz

yx yy yz

zx zy zz

The interpretation of this tensor is that the element σαβ gives how a
magnetic field along the α direction is translated by the anisotropic shift
into a field along the β direction.  The size of these elements depends on the
electronic structure (the factor that affects the "chemical shift"); they vary
with time as the molecule tumbles in solution.  It turns out that the shift
tensor is usually symmetric: σαβ = σβα.

There exists a set of axes, called the principal axis system (PAS), in
which the tensor is diagonal.  These axes are at some fixed orientation with
respect to the molecular framework.
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The shift tensor is specified completely by these three principal components
σαα

PAS.  However, it is usual to define a number of other parameters related to

these principal components:

σ σ σ σ

σ σ σ σ σ η σ σ

iso
PAS PAS PAS PAS

PAS PAS PAS PAS PAS PAS

Tr
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= = − +( ) = +( )

1
3

1
3

1
2 3 2

σ xx yy zz

zz zz xx yy xx yy|| ∆ ∆

σ iso is the isotropic chemical shift (dimensionless) which is observed in
solution; η is called the asymmetry parameter.  An axially symmetric shift
tensor has

σ σ σyy xx
PAS PAS= = ⊥

and so η = 0.  It then follows that

∆ = − ⊥σ σ||

∆ is loosely called "the shift anisotropy".  It is a dimensionless quantity,
usually quoted in parts per million, ppm.

It is often a good approximation to assume that shift tensors are axially
symmetric as they are frequently associated with chemical bonds which
inherently have this symmetry.

The term in the hamiltonian which depends on σiso is time independent
and forms the static hamiltonian.  The remaining time dependent terms are

q A(q) F(q) ω p
q( )

0 Iz
5

3
23 1ω θI∆ cos −( ) 0

±1 I±
5

4 2ω θ φI i∆sin exp m( ) mω I

where ωI is the Larmor frequency, and θ and φ are the usual polar angles
describing the orientation of the CSA tensor with respect to the z direction;
these angles change with time as the molecule tumbles.  The index p is not
needed.

6.3.5.1 Correlation functions

The required correlation functions are

G F t F tq q
q q

, τ τ( ) = ( ) −( )( ) −( )

and, as before, these will be written as

G F t F t g F gq q
q q q

, τ τ τ( ) = ( ) ( ) ( ) = ( )( ) −( ) ( )2

where g(τ) is the reduced correlation function.  The average of the square of
F(q) is computed by averaging over the ensemble, which is equivalent to
averaging over all angles θ and φ.  For example, for q = 0
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In fact, this is identical to the case of relaxation by a random field discussed
in Section 6.3.1 .  The relaxation rate constants found there were

R J R J Jz I I= ( ) = ( ) + ( )2 01
1
2 0 1ω ω         t

so, using the values from the table for the spectral densities, it is found for
CSA relaxation that

R j R j jz I I I I= ( ) = ( ) + ( ){ }1
3

2 2 2
9

1
6

2 20∆ ∆ω ω ω ω         t

These have a familiar form, with there being a contribution of 1
2 Rz  to the

transverse rate constant, and also a contribution depending on the spectral
density at zero frequency.

The CSA induced relaxation rate goes as the square of the Larmor
frequency and the square of the shift anisotropy.  It is thus rather
unimportant for nuclei such as protons which have very small shift
anisotropies, but it is very important for heteronuclei, such as 31P, and some
transition metals, at high magnetic fields.  Note, however, that if the nucleus
is at a site of cubic symmetry it has no shift anisotropy and thus there is no
CSA relaxation.

In the extreme narrowing limit it can be shown that (for an axially
symmetric CSA tensor)

R

Rz

t
ext. narrow

ext. narrow
= 7

6

This is in contrast to the case of dipolar relaxation where these two rates are
equal in this limit.

6.3.6 CSA-Dipolar cross correlation

As was commented on in Section 5.3.2, cross correlation between the
dipolar and CSA mechanisms is common, especially for directly bonded
pairs of nuclei such as 15N–1H and 13C–1H in which the heteroatom has a
significant CSA.  The two hamiltonians have a variety of terms, and these
are summarised in the table below.  For convenience, operators with the
associated frequencies, ω p

q( ) , are placed on the same line.  It is assumed that
only the I spin has a significant CSA.

Dipolar hamiltonian CSA hamiltonian
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q p Ap
q
,D

( ) F q
D
( ) A q

CSA
( ) F q

CSA
( ) ω p

q( )

0 0 I Sz z b 1 3 2−( )cos θ Iz
5

3
23 1ω θI∆ cos −( ) 0

+0 1 − + −
1
4 I S " –ωI + ωS

–0 1 − − +
1
4 I S " ωI – ωS

±1 1 I Sz ±   − ( )[ ]3
2 b isin cos expθ θ φm ±ωS

±1 2 I Sz± " I±   
5

4 2ω θ φI i∆sin exp m( ) ±ωI

±2 I S± ±   − ( )[ ]3
4

2 2b isin expθ φm   m (ωI + ωS)

Only those terms appearing on the same line will be effective at inducing
relaxation, as only these terms will be secular.  Thus, there are in fact only
three terms to consider: those involving the operators Iz, IzS+ and IzS–.

As described in Section 5.2.6, the key point about cross correlation is that
two different interactions are involved i.e. in the master equation:

d
d

T
Tσ σ ω ω ωt

t
A A t J i tp

q
p
q

p q p q
q q p

q
p
q

p
q( ) = − ( )[ ][ ] ( ) +( )( )( ) ( )

−
( ) ( ) ( )∑1

2 , , exp'
'

, , ' , '
, ' '

'
'
'

Ap
q( ) and Ap

q
'
'( ) are operators from different interactions, in this case one

representing the dipole interaction and one representing the CSA
interaction.  As has already been noted, only those terms for which
ω ωp

q
p
q( ) ( )+ ='

' 0  need be considered.

6.3.6.1 Correlation functions

The first correlation function that is needed is

G F t F t g F g00
0 0 0 2D-CSA

D CSA D-CSAτ τ τ( ) = ( ) ( ) ( ) = ( )( ) ( ) ( )

As before, the ensemble average of the interaction will be computed by
averaging over all angles

F b

b

I

I

D-CSA d d0 2 2 5
3

2

0

2

0

4
3 5

1
4

1 3 3 1( )

==

= −( ) −( )
= −

∫∫π
θ ω θ θ θ φ

ω
φ

π

θ

π

cos cos sin∆

∆

However, this calculation assumes that the CSA tensor and the dipole vector
are aligned.  Generally this is not the case, and so the average needs to be
modified to

F b

b P

I

I

D-CSA R

R

0 2 4
3 5

1
2

2

4
3 5 2

3 1( ) = − × −( )
= − ( )

ω θ

ω θ

∆

∆

cos

cos

where θR is the angle between the CSA tensor and the dipolar vector.  The
factor P2 cosθR( ), has a maximum of 1 when θR = 0, ±π and goes to zero
when θR is the magic angle, 54.7°.

The other correlation function is
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G F t F t g F g11
1 1 1 2D-CSA

D CSA D-CSAτ τ τ( ) = ( ) ( ) ( ) = ( )( ) ( ) ( )

F b PID-CSA R
1 2 1

2 5 2
( ) = − ( )ω θ∆ cos

The correlation functions for CSA-D are the same as for D-CSA
interactions.

6.3.6.2 Relaxation of longitudinal terms

Working through the double commutators reveals that the presence of CSA-
D cross correlation leads to a transfer between Iz and 2IzSz.  The Solomon
type equations become

d
d

          
d

d
I

t
R I S R I S

I S

t
R I S R Iz

I z IS z I IS z z
z z

IS z z I IS z= − − − = − −− −σ 2
2

2

where the relaxation rate constants RI, σIS, and RIS have contributions from
CSA and dipole relaxation as given above, and the rate constant RI-IS is
solely due to cross correlation and is given by

R J

b P j

I IS I

I I

− = ( )
= − ( ) ( )

2 1

1
5 2

D-CSA

R

ω

ω θ ω∆ cos
[20]

where J1
D-CSA ω( ) is the Fourier transform of G11

D-CSA τ( ).  Note that as it has
been assumed that only the I spin has a CSA, there is no relaxation induced
transfer from Sz to 2IzSz.  It should also be recalled from Section 6.2.4.3 that
in the presence of pure dipole relaxation, there is no transfer between Iz and
2IzSz.

In practice, what this means is that during the mixing time of an NOE
experiment there will be a gradual build up of the antiphase term 2IzSz.  For
this to be observable in homonuclear systems a small flip angle pulse needs
to be applied at the end of the mixing time – if a 90° pulse is used, the term
is converted into multiple quantum coherence.  In a heteronuclear system,
the pulse at the end of the mixing time is applied to just one spin, so the
antiphase term is detectable even for a 90° pulse.

In either case, it is necessary for there to be a resolved coupling between
I and S for the antiphase term to be observable.  As this term is
accompanied by an inphase term, the result will be that the two lines of the
doublet will have different intensities.  Observation of such an
unsymmetrical doublet is diagnostic of the presence of antiphase terms.

In Section 5.1.3 the rate constant for the transfer of 2IzSz to Sz was given
as

∆I I IW W= −( )( ) ( )1
2

1 2

where WI
1( )  and WI

2( )  are the transition rates for the two I spin transitions.
As was commented on in that Section, what is required for there to be
transfer to 2IzSz is that the two lines of the I spin doublet should relax at
different rates.  Cross correlation between dipole and CSA relaxation
provides just this differential rate.

This connection leads to an physical interpretation of the effect of cross
correlation.  The two lines of the I spin doublet are associated with the two
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different spin states of the S spin.  These two lines relax at different rates,
and so it follows that the relaxation of the I spin is affected by the spin state
of the S spin.  One picture is that the relaxation of the I spin depends on the
CSA derived field and the field arising from the dipole of the S spin.  The
direction of this latter field depends on the spin state of the S spin.  When
the spin is one way, the dipolar field may add to the CSA derived field and
hence promote relaxation.  When the spin is the other way, the dipolar field
may detract from the CSA derived field and so reduce the rate of relaxation.
The two lines thus relax at different rates.

The expression given in Eq. [20] for the rate constant RI-IS shows that this
can be positive or negative, depending on the sign of the CSA parameter ∆.
Thus, which of the two lines of the I spin is the one which relaxes most
quickly is depends on the sign of ∆.

6.3.6.3 Relaxation of transverse terms

Working through the double commutators reveals that the presence of CSA-
D cross correlation leads to a transfer between I+ and 2I+Sz.  The Solomon
type equations become

d
d

2      
d 2

d
2tI

t
R I R I S

I S

t
R I S R II I I S z

z
I S z I I Sz z z

+
+ − +

+
+ − += − − = − −

+ + + + +
[21]

where the relaxation rate constants RI
t  and RI Sz+

 have contributions from
CSA and dipolar relaxation as given above.  The rate constant RI I Sz+ +−  is
solely due to cross correlation and is given by

R J J

j j b P

I I S I

I I

z+ +− = ( ) + ( )
= − ( ) + ( ){ } ( )

1
2 0 1

3
2 5

1
2 5 2

0

0

D-CSA D-CSA

R

ω

ω ω θ∆ cos

where Jq
D-CSA ω( ) is the Fourier transform of Gqq

D-CSA τ( ).
As in the longitudinal case, this result implies that the two lines of the I

spin doublet relax at different rates, and this would be observed in the form
of different linewidths of the two components.

6.3.6.4 Differential relaxation of the two lines of the doublet

In order to find out the width of the two individual lines of the I spin doublet
it is necessary to convert the relaxation rates of individual operators into
those of individual lines.  This is readily done in this simple case once it is
realized that the operator I+ represents a situation in which the two lines of
the I spin doublet are in-phase, whereas 2I+Sz represents the two lines being
out of phase.  Therefore, the following operator combinations, I(1) and I(2)

represent the individual lines of the multiplet

I I I S I I I Sz z
1 1

2
2 1

22 2( )
+ +

( )
+ += +( ) = −( )        

The equation of motion for I(1) is simply found by adding Eqs. [21]

d
d

d
d

d 2
d

2 2t

I

t

I

t

I S

t

R I R I S R I S R I

z

I I I S z I S z I I Sz z z

1
1
2

1
2

( )
+ +

+ − + + − +

= +





= − − − −[ ]+ + + + +

The right-hand side is expressed in terms of I(1) and I(2) by noting that

+ –

= =

I(1) I(2)

2I+Sz

I+
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I I I I S I Iz+
( ) ( )

+
( ) ( )= + = −1 2 1 22           

and so

d
d

t

t

I

t

R I I R I I

R I I R I I

R R R I

I I I S

I S I I S

I I I S I S

z

z z

z z

1
1
2

1 2 1 2

1 2 1 2

1
2

12

( ) ( ) ( )
−

( ) ( )

( ) ( )
−

( ) ( )

−

=
− +{ } − −{ }
− −{ } − +{ }















= − + +[ ]

+ +

+ + +

+ + +

(( )
−

( )+ − + +[ ]+ + +

1
2

2R R R II I I S I Sz z

t

[22]

The operators I(1) and I(2) represent lines which differ in frequency by the
coupling constant.  If it is assumed that the lines are sufficiently narrow that
the coupling is still well resolved, then the second term on the right on Eq.
[22] can be ignored as the oscillation of I(2) relative to I(1) will be faster than
the time dependence due to relaxation.  This term will therefore be non-
secular and so can be ignored.

A similar calculation for I(2) can be followed through to give the
following rate constants for I(1) and I(2)

for   

for   

t

t

I R R R R

I R R R R

I I I I S I S

I I I I S I S

z z

z z

1 1
2

2 1
2

1

2

2

2

( )
−

( )
−

( ) + + +

( ) + + +

= + +[ ]
= − +[ ]

:

:

As was calculated above, the rate constant RI I Sz+ +− is

R j j b PI I S I Iz+ +− = − ( ) + ( ){ } ( )2
3 5

1
2 5 20 ω ω θ∆ cos R

The sign of RI I Sz+ +−  depends on the relative signs of the gyromagnetic
ratios γI and γS (these appear in b), and on the sign of the chemical shift
anisotropy, ∆ .  If RI I Sz+ +−  is positive, then the line represented by I(2) will
relax more slowly than I(1) and so will be narrower.  The opposite is the case
if RI I Sz+ +−  is negative.

The contribution made by RI I Sz+ +−  turns out to be rather small in the
extreme narrowing limit, but as the correlation time gets longer and longer
the term becomes more significant compared to R RI I Sz

t +
+

.

In the spin diffusion limit it is possible for the rate constant RI I Sz+ +−  to be
so large that it cancels out the other terms and thus leads to one of the
components of the doublet being infinitely sharp as the associated operator
does not relax at all.  This cancellation takes place when

ω I

b

∆ = ≈3
2 5

67.

Essentially, this condition is that the dipolar and CSA derived random fields
cancel.

In practice there will always be other sources of relaxation present so that
the line is not infinitely sharp.  However, the attached proton is the
dominant source of relaxation, so the line narrowing is very significant.

A typical 15N–1H spin pair in a protein has ∆N = –160 ppm and r = 1.01
Å.  At a field of 18.8 T (800 MHz for proton), and with a correlation time of
10 ns, the relaxation rate constants for the two lines of the 15N doublet are
77 and 4 s–1.  If the correlation time rises to 30 ns, the rate constants are 230
and 13 s–1.  There is more than an order of magnitude difference between the
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linewidths.  With these parameters, the narrowing is a maximum at a field
of about 11.5 T.

The proton has a much smaller CSA than 15N, but the proton Larmor
frequency is about ten times higher than that for 15N so that the effect of a
given CSA is much greater.  A typical 15N–1H spin pair in a protein has ∆H =
–16 ppm which, taking into account the Larmor frequency of proton, is
significant.  As a result, the two lines of the proton doublet also have
different linewidths.  For the parameters described in the previous section
the rate constants are 75 and 4 s–1 for τc = 10 ns, and 226 and 13 s–1 for τc =
30 ns.  Thus, the effect on the proton and 15N doublets is much the same.

An important consequence of these observations is the development of
the TROSY experiment.


