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5. Relaxation
Relaxation is the process by which the spins in the sample come to
equilibrium with the surroundings.  At a practical level, the rate of
relaxation determines how fast an experiment can be repeated, so it is
important to understand how relaxation rates can be measured and the
factors that influence their values.  The rate of relaxation is influenced by
the physical properties of the molecule and the sample, so a study of
relaxation phenomena can lead to information on these properties.  Perhaps
the most often used and important of these phenomena in the nuclear
Overhauser effect (NOE) which can be used to probe internuclear distances
in a molecule.  Another example is the use of data on relaxation rates to
probe the internal motions of macromolecules.

In many kinds of spectroscopy relaxation is very fast, making it difficult
to study.  However, in NMR relaxation is rather slow, typically measured on
a timescale of seconds, and so it is much easier to study and exploit.  The
reason that NMR relaxation is so slow is that molecular collisions, which
are responsible for the efficient relaxation of electronic, vibrational and
rotational energy levels, have little or no effect on the nuclei.  The
interactions responsible for relaxation in NMR are rather weak and involve,
not surprisingly, magnetic interactions with the nuclei.

To understand the microscopic origin of relaxation it is necessary to use
quantum mechanics to consider the details of the motions of individual
spins in the sample.  At the most basic level, these motions are identical in
origin to those encountered in normal pulsed NMR.  However, the
difference is that the magnetic fields which affect the spins are not applied
by the spectrometer e.g. as a pulse, but appear due to interactions with other
molecules in the sample.  These interactions are modulated by molecular
motion and so are time dependent and random.  Working out the effect of
such random fields will require some extra quantum mechanical tools not
needed in the normal description of pulsed NMR.  It will also be seen that
the random nature of these interactions is what drives the spins towards
equilibrium.

5.1 Describing relaxation

In this section the language and concepts used to describe relaxation will be
introduced and illustrated.  At this stage it will simply be taken for granted
that there are processes which give rise to relaxation; the relaxation rate
constants will simply be treated as parameters.  In the subsequent sections it
will be seen how relaxation arises and how the values of the rate constants
can be calculated.

5.1.1 What is relaxation?

Relaxation is the process by which the spins return to equilibrium.
Equilibrium is the state in which (a) the populations of the energy levels are
those predicted by the Boltzmann distribution and (b) there are no
coherences present in the system.

Both of the criteria (a) and (b) refer to a system in which there are many
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spins present, that is an ensemble.  As was seen in Section 1.6, a coherence
arises when there is a special relationship between the phases of the
wavefunctions of the spins in the sample; observable transverse
magnetization is an example of such a coherence.  The concept of
populations – that is the number of spins occupying a particular energy level
– is one which only makes sense when there are many spins present.
Relaxation as an approach to equilibrium is therefore a concept which is
associated with the behaviour of large numbers of spins – a macroscopic
sample.  It is not possible to talk about a single spin returning to
equilibrium.

One of the features of a system at equilibrium is that it should not display
any time dependence (e.g. a mechanical system at equilibrium does not
move and the concentrations of species which have come to chemical
equilibrium do not change with time).  The presence of coherences is
therefore incompatible with equilibrium as coherences are time dependent.
For example, transverse magnetization, which is a coherence, precesses in
the xy-plane giving rise to oscillating x- and y-components which can be
detected.

5.1.1.1 Populations

The NMR sample consists of a large number of identical molecules.  Due to
the rapid isotropic motion in a liquid, it is a very good approximation to
assume that the spins in different molecules are not interacting with one
another.  Even within the same molecule some of the interactions between
the spins are also averaged to zero by the motion of the liquid, typically
leaving just the scalar coupling.  The set of interacting spins in a molecule is
called the spin system.  Thus, the sample can be thought of as an ensemble
of identical spin systems.

It will be seen that relaxation arises from these interactions both between
and in spin systems.  However, relaxation phenomena are such a weak
perturbation on the system that it is an excellent approximation to assume in
the first instance that the sample consists of an ensemble of non-interacting
spin systems.

Each member of the ensemble has the same spin system and so has the
same set of quantized energy levels.  Different members of the ensemble
will find themselves in different energy levels, so that taking the sample as a
whole it is possible to talk about the population of a particular energy level.
By population, it is meant the number of members of the ensemble which
are to be found in a particular energy level.

At equilibrium, the number, ni, in energy level i with energy εi is given
by the Boltzmann distribution:

n
g N

Z kTi
i i= −



exp

ε

where gi is the degeneracy of the ith level, k is Boltzmann's constant, T is
the temperature and N is the number of systems in the ensemble.  Z is the
partition function, defined as
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where the sum is over all energy levels of the spin system.

In words, the Boltzmann distribution says that as the energy of a level
goes up, its population goes down.  It also says that only levels with
energies of the order of kT or less (measured from the ground state) are
significantly populated.

For a system consisting of one spin in a magnetic field, there are just two
energy levels (α and β) with energies   ±

1
2 0hω , where ω0 is the Larmor

frequency in rad s–1 (Section 1.4); the levels are not degenerate.  The
partition function is therefore
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For typical NMR frequencies,   hω0 << kT , so the argument of the
exponential is a small number and the approximation exp(x) ≈ 1 + x can be
used.  So
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The population of the two spin states is therefore
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The population difference is therefore
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where, as before, the approximation for exp(x) has been used.  For spins
with a Larmor frequency of 500 MHz this difference is of the order of 4 ×
10–5 N at room temperature.  In words, as the two energy levels are so
closely spaced in energy compared to kT their populations are almost equal.
It is this very small population difference which ultimately leads to an
observable signal in NMR.

5.1.1.2 Longitudinal magnetization

When an NMR sample is placed in a static magnetic field and allowed to
come to equilibrium it is found that a net magnetization of the sample along
the direction of the applied field (traditionally the z-axis) is developed.
Magnetization parallel to the applied field is termed longitudinal.
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This equilibrium magnetization arises from the unequal population of the
two energy levels.  The argument is that the state α has a magnetic quantum
number + 1

2  and therefore is represented by a vector with a projection of + 1
2

along the field direction; likewise β has a projection of − 1
2 .  If the number

of spins in the two states were equal the individual z-components would
cancel, leaving no resultant.  However, the α state is slightly more
populated so the cancellation is not complete resulting in a net contribution
along the field direction.  This is the origin of the equilibrium
magnetization.

The z-magnetization, Mz, is proportional to the population difference

M n nz ∝ −( )α β

where nα and nβ are the populations of the two corresponding energy levels.
Ultimately, the constant of proportion just determines the absolute size of
the signal we will observe.  As we are generally interested in the relative
size of magnetizations and signals we may just as well write

M n nz = −( )α β [2]

5.1.1.3 Transverse magnetization and coherence

Transverse magnetization or, more generally, coherence, cannot be
described using populations.  A detailed discussion of the phenomenon of
coherence was given in Section 1.6; the main points will be reviewed here.

The wavefunction for a single spin can be written as a superposition state

ψ α βα βt c t c t( ) = +( ) ( ) [3]

where cα(t) and cβ(t) are complex coefficients which depend on time.  The
expectation value of the operator, Ix, Ix  is

I c c c cx = +( )1
2 β α α β

* *

where, for brevity, the time dependence has not been indicated explicitly.
This expectation value is the value of x-component of the angular
momentum, averaged over many measurements of the same system.

It is convenient to write the coefficients cα etc. in the r/φ format

c r i c r iα α α β α βφ φ= ( ) = ( )exp exp

Using these Ix  is

I r rx = −( )α β α βφ φcos

All of this refers to a single spin.  However, in a sample there are many
spins, so to find the total angular momentum along the x-direction, which
gives the x-magnetization from the sample, it is necessary to add up the
contributions from each spin in the sample
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Vector representation of the
two possible spin states of a
spin-half nucleus.
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A population difference gives
rise to net magnetization along
the z-axis.
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where Ix i
 is the contribution from the ith spin in the sample.  This process

is called ensemble averaging and indicated by the overbar.

The contribution from each spin depends on the values of r and φ.  It is
supposed that at equilibrium the phases φ are distributed randomly, and as a
result the average of the cosine term in the last line above is zero.  The
hypothesis of random phases predicts that there is no x-magnetization at
equilibrium, which is consistent with observation.

It was also shown in Section 1.6 that a radio-frequency pulse can cause
the coefficients cα and cβ to vary in such a way that the ensemble average

c cβ α
*

is no longer zero.  This situation is referred to as a coherence, and it is clear
from the above relations that it will give rise to an ensemble average for Ix

which is non zero i.e. net x-magnetization.  In this situation, the phases are
no longer random.

It therefore follows that the loss of net x-magnetization results from a
progressive randomization of the phases of the individual spins which
contribute to the ensemble.  When the phases are completely randomized
once more, equilibrium will be reached and there will be no transverse
magnetization.

5.1.1.4 Populations again

For the superposition state of Eq. [3] the expectation value of the z-
component of angular momentum is

I c c c c r rz = −( ) = −( )1
2

1
2

2 2
α α β β α β

* *

and the ensemble average is

I c c c c r rz = −( ) = −( )1
2

1
2

2 2
α α β β α β

* * [4]

Note that, in contrast to the case of Ix  the phases do not come into this
expression, so the ensemble is not necessarily zero at equilibrium.

In quantum mechanics the product c cα α
*  is identified at the probability of

finding the spin in the α state, and so its ensemble average can be identified
with the population of this state.  So, Eq. [4] says that the ensemble average
of the x-component of the angular momentum, that is the net x-
magnetization, is proportional to the population difference between the α
and β states, just as was stated in Section 5.1.1.1 .

5.1.2 Rate equations and rate constants

The populations of energy levels are in many ways analogous to
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concentrations in chemical kinetics, and many of the same techniques that
are used to describe the rates of chemical reactions can also be used to
describe the dynamics of populations.  This will lead to a description of the
dynamics of the z-magnetization but not, as has been seen from Section
5.1.1.3, of the transverse magnetization.

Suppose that the populations of the α and β states at time t are nα and nβ,
respectively.  If these are not the equilibrium values, then for the system to
reach equilibrium the population of one level must increase and that of the
other must decrease.  This implies that there must be transitions between the
two levels i.e. something must happen which causes a spin to move from the
α state to the β state or vice versa.

The simplest assumption is that the rate of transitions from α to β is
proportional to the population of the α state (i.e. a first order process):

rate from  to  

                      

α β α

αβ α

∝
=

n

W n

where Wαβ is the rate constant for transitions from α to β.  Likewise the rate
of transitions from β to α is written

rate from  to  β α βα β= W n

So, the overall rate of change of the populations of the two states are
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In these differential equations the positive terms represent a gain in
population, and the negative ones a loss.

The z-magnetization just depends on the population difference (Eq. [2]),
so using Eqs. [5] it is possible to find a differential equation for Mz
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Not surprisingly, the rate of change of Mz depends on both the transition
rates.

At equilibrium the z-magnetization must not be changing, so
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where nα
0  is the equilibrium population of the α state, and likewise for β.

At equilibrium, the lower energy state (α) is the more populated, so it
follows that Wβα must be larger than Wαβ.  In other words, the probability of
a spin going from the higher energy state to the lower one is higher than
that for the reverse process.

The extent to which these rates are different can be calculated from by

α

αβ

β

W

α

βα

β

W



5–7

using the Boltzmann distribution to find n nα β
0 0 .  From Eq. [1]
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5.1.2.1 The lattice

Why is it that the transition rate constants for the α→β and β→α processes
are different?  The key lies in understanding the details of the energy flow
between the spin and the surroundings.  If the spin goes from the lower to
the upper state it requires energy which must come from somewhere;
likewise, if the spin drops from the higher to the lower energy level the
energy given out must be taken up elsewhere.

This sink or source of energy is traditionally called the lattice.  This
name really implies the surroundings in general, rather than a particular kind
of surroundings such as a crystalline lattice; it is simply a historical accident
that the surroundings have been termed the lattice.

When the spin moves up in energy, the lattice must experience a
corresponding drop in energy – that is, there must be a transition in the
lattice from a higher to a lower energy level.  Likewise, when the spin gives
up energy as it falls to the lower state there must be a corresponding
transition in the lattice which takes it to a higher level.

The amounts of energy involved in NMR transitions are so tiny and the
lattice (the surroundings) are so large that it is safe to assume that there will
always be a transition in the lattice whose energy matches that of the spin.
Put another way, the density of quantum states in the lattice is so high that
they form a virtual continuum.

If the lattice is at equilibrium, its energy levels are populated in a way
which is predicted by the Boltzmann distribution; the populations of the
lattice levels decrease as they go up in energy.  Therefore, it is "easier" for
the lattice to take in energy than for it to give out energy as in taking in
energy the transition in the lattice starts from a more populated level.  In
contrast, to give out energy, the lattice has to start in a higher energy level
which is less populated.

The probability that the lattice will be able to take in energy is thus
higher than the probability that it will be able to give out the same amount
of energy.  In terms of the two rate constants, this implies that Wβα >Wαβ,
which is what is required for the spins to come to equilibrium with the
lattice.  A detailed discussion of the population distribution of the lattice
shows that these two rate constants are expected to be in precisely the ratio
given by Eq. [6].

This simple example illustrates what turns out to be a more general point
which is that to obtain a correct description of NMR relaxation it is
important to consider both the spins and the lattice as quantum objects.
Unfortunately, this considerably complicates the theory needed to predict
relaxation rate constants.  However, there is neat way of side-stepping this

α

β

α

β

spin lattice

spin lattice
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problem, which is described in the next section.

5.1.2.2 Equilibrium

It will turn out that if the quantum nature of the lattice is ignored, any theory
about the transition rate constant will predict that Wβα =Wαβ ( = W). If this is
the case, the equilibrium situation, described by Eq. [6], becomes

d
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hence      and     
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where Mz
0  is the equilibrium z-magnetization.  In other words, the

assumption that the two transition rate constants are equal results in a
prediction of zero equilibrium z-magnetization, which is certainly not
correct.

The situation can be retrieved by modifying the rate equations given in
Eq. [5] so that rather than the rates depending on the populations they
depend on the difference of the populations from their equilibrium values.
So
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With this assumption, the equation for the z-magnetization is
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At equilibrium, d dM tz = 0, and so the last line gives the correct result that
Mz = M0

z at equilibrium.

In fact, provided that we replace the populations by their deviations from
their equilibrium values (or, equivalently, magnetizations by deviations
from their equilibrium values) it is possible to use the simpler theory for
calculating transition rate constants.  Quantum effects from the lattice need
not be considered.

5.1.2.3 Differential equations for magnetizations and operators

The discussion in the previous section led to a differential equation
describing the motion of the z-magnetization

d
d

M t

t
R M t Mz

z z z

( ) = − ( ) −( )0 [7]

where the rate constant, Rz = 2W and Mz has been written explicitly as a
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function of time, Mz(t).  This equation can easily be integrated:
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If, at time zero, the magnetization is Mz(0), the constant of integration can
be determined.  Hence
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In words, this says that the z-magnetization returns from Mz(0) to the
equilibrium value following an exponential law.  The time constant of the
exponential is 1/Rz.  This time constant is the familiar T1 from the Bloch
equations.

The z-magnetization is proportional to the ensemble average of the
expectation value of the operator for the z-component of spin angular
momentum:

M Iz z∝ .

Therefore Eq. [7] can be written

d

d

I t

t
R I t Iz

z z z

( )
= − ( ) −( )0

[8]

It is particularly convenient to express relaxation behaviour in terms of
operators as multiple-pulse sequences are often analysed using operators.  It
is common to write Eq. [8] as

d
d
I t

t
R I t Iz

z z z

( ) = − ( ) −( )0

where the expectation value and the ensemble average is implied; as it
stands this last equation seems to imply that the operators change with time,
which is not what is meant.  What is changing is the wavefunctions and
populations of the spin system.

5.1.3 Solomon equations

The idea of writing differential equations for the populations, and then
transcribing these into magnetizations, is a particularly convenient way of
describing relaxation, especially in more complex system.  This will be
illustrated in this section.

Consider a sample consisting of molecules which contain two spins, I
and S; the spins are  not coupled.  As was seen in Section 1.4, the two spins
have between them four energy levels, which can be labelled according to
the spin states of the two spins.

t

Mz

Mz(0)

Mz
0
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(a) (b)

Diagram (a) shows the energy levels of a two spin system; the levels are labelled with the spin of I first
and the spin of S second.  The dashed arrows indicate allowed transitions of the I spin, and the solid
arrows indicate allowed transitions of the S spin.  Diagram (b) shows the relaxation induced transitions
which are possible amongst the same set of levels.

It turns out that in such a system it is possible to have relaxation induced
transitions between all possible pairs of energy levels, even those transitions
which are forbidden in normal spectroscopy; why this is so will be seen in
detail below.  The rate constants for the two allowed I spin transitions will
be denoted WI

1( )and WI
2( ) , and likewise for the spin S transitions.  The rate

constant for the transition between the αα and ββ states is denoted W2, the
"2" indicating that it is a double quantum transition.  Finally, the rate
constant for the transition between the αβ and βα states is denoted W0, the
"0" indicating that it is a double quantum transition.

Just in the same was as was done in Section 5.1.2, rate equations can be
written for the flow of population from any of the levels.  For example, for
level 1

d
d
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W n W n W n W n W n W nS I S I

1 1
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1
1 2 1

1
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1
3 2 4= − − − + + +( ) ( ) ( ) ( )

The negative terms are rates which lead to a loss of population of level 1
and the positive terms are ones that lead to a gain in its population.  As was
discussed in Section 5.1.2.2 the populations ought to be written as
deviations from their equilibrium values, n ni i−( )0 .  However, to do this
results in unnecessary complexity; rather, the calculation will be carried
forward as written and then at the last stage the populations will be replaced
by their deviations from equilibrium.

The corresponding equations for the other populations are
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All of this can be expressed in a more compact way if we introduce the I
and S spin z-magnetizations, just as was done in Section 5.1.1.2 .  The I spin
magnetization is equal to the population difference across the two I spin
transitions, 1–3 and 2–4

I n n n nz = − + −1 3 2 4 [9]

As discussed above, the magnetization has been represented as the
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corresponding operator, Iz.  Likewise for the S-spin magnetization

S n n n nz = − + −1 2 3 4 [10]

A fourth combination of populations will be needed, which is represented
by the operator 2IzSz

2 1 3 2 4I S n n n nz z = − − + [11]

Comparing this with Eq. [9] reveals that 2IzSz represents the difference in
population differences across the two I-spin transitions; likewise,
comparison with Eq. [10] shows that the same operator also represents the
difference in population differences across the two S-spin transitions.

Taking the derivative of Eq. [9] and then substituting for the derivatives
of the populations gives
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[12]

This unpromising looking equation can be expressed in terms of Iz, Sz etc. by
first introducing one more operator E, which is essentially the identity or
unit operator

E n n n n= + + +1 2 3 4 [13]

and then realizing that the populations, ni, can be written in terms of E, Iz, Sz,
and 2Iz Sz:

n E I S I S

n E I S I S

n E I S I S

n E I S I S

z z z z

z z z z
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2

= + + +( )
= + − −( )
= − + −( )
= − − +( )

where these relationships can easily be verified by substituting back in the
definitions of the operators in terms of populations, Eqs. [9] – [13].

After some tedious algebra, the following differential equation is found
for Iz
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I I

z I I z z
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1 2
2 0
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[14]

Similar algebra gives the following differential equations for the other
operators
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I S

t
W W I W W S

W W W

z S S S S z z

z
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= − −( ) − −( )
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( ) ( ) ( ) ( )
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1 2

1 2 1 2

1 2 1

2

++( )( )W I SS z z
2 2

As expected, the total population, represented by E, does not change with
time.  These three differential equations are known as the Solomon
equations.

It must be remembered that the populations used to derive these
equations are really the deviation of the populations from their equilibrium
values.  As a result, the I and S spin magnetizations should properly be their
deviations from their equilibrium values, Iz

0  and Sz
0; the equilibrium value

of 2IzSz is easily shown, from its definition, to be zero.  For example, Eq.
[14] becomes

d

d

                  

z
z

z

I I

t
W W W W I I

W W S S W W I S

z
I I z

z I I z z

−( )
= − + + +( ) −( )

− −( ) −( ) − −( )

( ) ( )

( ) ( )

0
1 2

2 0
0

2 0
0 1 2 2

5.1.3.1 Interpreting the Solomon equations

What the Solomon equations predict is, for example, that the rate of change
of Iz depends not only on I Izz − 0 , but also on S Szz − 0  and 2IzSz.  In other
words the way in which the magnetization on the I spin varies with time
depends on what is happening to the S spin – the two magnetizations are
connected. This phenomena, by which the magnetizations of the two
different spins are connected, is called cross relaxation.

The rate at which S magnetization is transferred to I magnetization is
given by the term

W W S Sz2 0
0−( ) −( )z

in Eq. [14]; (W2–W0) is called the cross-relaxation rate constant, and is
sometimes given the symbol σIS.  It is clear that in the absence of the
relaxation pathways between the αα and ββ states (W2), or between the αβ
and βα states (W0), there will be no cross relaxation.  This term is described
as giving rise to transfer from S to I as it says that the rate of change of the I
spin magnetization is proportional to the deviation of the S spin
magnetization from its equilibrium value.  Thus, if the S spin is not at
equilibrium the I spin magnetization is perturbed.

In Eq. [14] the term

W W W W I II I z
1 2

2 0
0( ) ( )+ + +( ) −( )z

describes the relaxation of I spin magnetization on its own; this is
sometimes called the self relaxation.  Even if W2 and W0 are absent, self
relaxation still occurs.  The self relaxation rate constant, given in the
previous equation as a sum of W values, is sometimes given the symbol RI

or ρI.
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Finally, the term

W W I SI I z z
1 2 2( ) ( )−( )

in Eq. [14] describes the transfer of IzSz into I spin magnetization.  Recall
that WI

1( )  and WI
2( )  are the relaxation induced rate constants for the two

allowed transitions of the I spin (1–3 and 2–4).  Only if these two rate
constants are different will there be transfer from 2IzSz into I spin
magnetization. It will be seen later in Section 6.2.6 that such a situation
arises when there is cross-correlation between different relaxation
mechanisms.  The rate constants for this transfer will be written

 ∆ ∆I I I S S SW W W W= −( ) = −( )( ) ( ) ( ) ( )1 2 1 2          

According to the final Solomon equation, the operator 2IzSz shows self
relaxation with a rate constant

R W W W WIS I I S S= + + +( )( ) ( ) ( ) ( )1 2 1 2

Note that the W2 and W0 pathways do not contribute to this.  This rate
combined constant will be denoted RIS.

Using these combined rate constants, the Solomon equations can be
written

d

d

d

d
d2

d

z
z z

z
z z

z
z z

I I

t
R I I S S I S

S S

t
I I R S S I S

I S

t
I I S S R

z
I z IS z I z z

z
IS z S z S z z

z
I z S z IS

−( )
= − −( ) − −( ) −

−( )
= − −( ) − −( ) −

= − −( ) − −( ) −

0
0 0

0
0 0

0 0

2

2

σ

σ

∆

∆

∆ ∆ 22I Sz z

[15]

The pathways between the different magnetization are visualized in the
diagram opposite.  Note that as d dI tz

0 0=  (the equilibrium magnetization is
a constant), the derivatives on the left-hand side of these equations can
equally well be written d dI tz  and d dS tz .

It is important to realize that in such a system Iz and Sz do not relax with a
simple exponentials.  They only do this if the differential equation is of the
form

d
d
I

t
R I Iz

z z z= − −( )0

which is plainly not the case here.  For such a two-spin system, therefore, it
is not proper to talk of a "T1" relaxation time constant.

5.1.4 Nuclear Overhauser effect

The Solomon equations are an excellent way of understanding and
analysing experiments used to measure the nuclear Overhauser effect.
Before embarking on this discussion it is important to realize that although
the states represented by operators such as Iz and Sz cannot be observed
directly, they can be made observable by the application of a radiofrequency
pulse, ideally a 90° pulse

σ
IS

∆
I

∆
S

2IzSz

Iz Sz
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aI aIz
I

y
xπ 2( ) → −

The subsequent recording of the free induction signal due to the evolution of
the operator Iy will give, after Fourier transformation, a spectrum with a
peak of size –a at frequency ΩI.  In effect, by computing the value of the
coefficient a, the appearance of the subsequently observed spectrum is
predicted.

The basis of the nuclear Overhauser effect can readily be seen from the
Solomon equation (for simplicity, it is assumed in this section that ∆I = ∆S =
0)

d

d
z

z z

I I

t
R I I S Sz

I z IS z

−( )
= − −( ) − −( )

0
0 0σ

What this says is that if the S spin magnetization deviates from equilibrium
there will be a change in the I spin magnetization at a rate proportional to
(a) the cross-relaxation rate, σIS and (b) the extent of the deviation of the S
spin from equilibrium.  This change in the I spin magnetization will
manifest itself as a change in the intensity in the corresponding spectrum,
and it is this change in intensity of the I spin when the S spin is perturbed
which is termed the nuclear Overhauser effect.

Plainly, there will be no such effect unless σIS is non-zero, which requires
the presence of the W2 and W0 relaxation pathways.  It will be seen in
Section 6.2.4 that such pathways are only present when there is dipolar
relaxation between the two spins and that the resulting cross-relaxation rate
constants have a strong dependence on the distance between the two spins.
The observation of a nuclear Overhauser effect is therefore diagnostic of
dipolar relaxation and hence the proximity of pairs of spins.  The effect is of
enormous value, therefore, in structure determination by NMR.

5.1.4.1 Transient experiments

A simple experiment which reveals the NOE is to invert just the S spin by
applying a selective 180° pulse to its resonance.  The S spin is then not at
equilibrium so magnetization is transferred to the I spin by cross-relaxation.
After a suitable period, called the mixing time, τm, a non-selective 90° pulse
is applied and the spectrum recorded.

After the selective pulse the situation is

I I S Sz zz z0 00 0( ) = ( ) = − [16]

where Iz has been written as Iz(t) to emphasize that it depends on time and
likewise for S.  To work out what will happen during the mixing time the
differential equations

d
d

d
d

z
z z

z
z z

I t

t
R I t I S t S

S t

t
I t I R S t S

I z IS z

IS z S z

( ) = − ( ) −( ) − ( ) −( )
( ) = − ( ) −( ) − ( ) −( )

0 0

0 0

σ

σ

need to be solved (integrated) with this initial condition.  One simple way to
do this is to use the initial rate approximation.  This involves assuming that
the mixing time is sufficiently short that, on the right-hand side of the

mτ
90°180°

S

90°

(a)

(b)

Pulse sequence for recording
transient NOE enhancements.
Sequence (a) involves selective
inversion of the S spin – shown
here using a shaped pulse.
Sequence (b) is used to record
the reference spectrum in
which the intensities are
unperturbed.
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equations, it can be assumed that the initial conditions set out in Eq. [16]
apply, so, for the first equation

d
d
z

init

I t

t
R I I S S

S

I z z IS z z

IS z

( ) = − −( ) − − −( )
=

0 0 0 0

02

σ

σ
This is now easy to integrate as the right-hand side has no dependence on
Iz(t)

d dz

z m z m

z m m

m m

I t S t

I I S

I S I

IS z

IS z

IS z z

( ) =

( ) − ( ) =

( ) = +

∫ ∫
0

0

0

0

0 0

2

0 2

2

τ τ

σ

τ σ τ

τ σ τ

This says that for zero mixing time the I magnetization is equal to its
equilibrium value, but that as the mixing time increases the I magnetization
has an additional contribution which is proportional to the mixing time and
the cross-relaxation rate, σIS.  This latter term results in a change in the
intensity of the I spin signal, and this change is called an NOE enhancement.

The normal procedure for visualizing these enhancements is to record a
reference spectrum in which the intensities are unperturbed.  In terms of z-
magnetizations this means that I Iz z, ref = 0 .  The difference spectrum, defined
as (perturbed spectrum – unperturbed spectrum) corresponds to the
difference

I I S I I

S

z IS z z z

IS z

z m ref m

m

τ σ τ

σ τ

( ) − = + −

=
, 2

2

0 0 0

0

The NOE enhancement factor, η, is defined as

η = intensity in enhanced spectrum -  intensity in reference spectrum
intensity in reference spectrum

so in this case η is

η τ
τ σ τ

m
z m ref

ref

m( ) = ( ) −
=

I I

I

S

I
z

z

IS z

z

,

,

2 0

0

and if I and S are of the same nuclear species (e.g. both proton), their
equilibrium magnetizations are equal so that

η τ σ τm m( ) = 2 IS

Hence a plot of η against mixing time will give a straight line of slope σIS;
this is a method used for measuring the cross-relaxation rate constant.  A
single experiment for one value of the mixing time will reveal the presence
of NOE enhancements.

This initial rate approximation is valid provided that

σ τ τIS SRm m  and  << <<1 1

the first condition means that there is little transfer of magnetization from S
to I, and the second means that the S spin remains very close to complete
inversion.

enhanced

reference

difference

S I

Visualization of how an NOE
di f ference spectrum is
recorded.  The enhancement is
assumed to be positive.



5–16

Longer mixing times

At longer mixing times the differential equations are a little more difficult to
solve, but they can be integrated using standard methods (symbolic
mathematical programmes such as Mathematica are particularly useful for
this).  Using the initial conditions given in Eq. [16] and, assuming for
simplicity that I Sz z

0 0=  the following solutions are found

I

I R
z

z

ISτ σ λ τ λ τm
m m

( ) = −( ) − −( )[ ] +0 2 1

2
1exp exp

S

I

R R

R
z

z

I Sτ
λ τ λ τ

λ τ λ τ

m
m m

m m              

( ) = −





−( ) − −( )[ ]
+ − −( ) + −( )

0 1 2

1 21

exp exp

exp exp

where

R R R R R

R R R R R R

I I S S IS

I S I S

= − + +

= + +[ ] = + −[ ]

2 2 2

1
1
2 2

1
2

2 4σ

λ λ      

These definitions ensure that λ1 > λ2.  If RI and RS are not too dissimilar, R is
of the order of σIS, and so the two rate constants λ1 and λ 2 differ by a
quantity of the order of σIS.

As expected for these two coupled differential equations, integration
gives a time dependence which is the sum of two exponentials with different
time constants.

The figure below shows the typical behaviour predicted by these
equations (the parameters are RI = RS = 5σIS)

0

-1.0

-0.5

0.0

0.5

1.0

1.5

time

(Sz/Iz
0)

10 × (Iz–Iz
0)/Iz

0

(Iz/Iz
0)

The S spin magnetization returns to its equilibrium value with what appears
to be an exponential curve; in fact it is the sum of two exponentials but their
time constants are not sufficiently different for this to be discerned.  The I
spin magnetization grows towards a maximum and then drops off back
towards the equilibrium value. The NOE enhancement is more easily
visualized by plotting the difference magnetization, (Iz – Iz

0)/Iz
0, on an

expanded scale; the plot now shows the positive NOE enhancement
reaching a maximum of about 15%.

Differentiation of the expression for Iz as a function of τm shows that the
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maximum enhancement is reached at time

τ
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and that the maximum enhancement is
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5.1.4.2 Steady state experiments

The steady-state NOE experiment involves irradiating the S spin with a
radiofrequency field which is sufficiently weak that the I spin is not
affected.  The irradiation is applied for long enough that the S spin is
saturated, meaning Sz = 0, and that the steady state has been reached, which
means that none of the magnetizations are changing, i.e. d dI tz( ) = 0 .

Under these conditions the first of Eqs. [15] can be written

d

d
z

SS

z,SS

I I

t
R I I Sz

I z IS z

−( )
= − −( ) − −( ) =

0
0 00 0σ

therefore

I
R

S IIS

I
z zz,SS = +σ 0 0

As in the transient experiment, the NOE enhancement is revealed by
subtracting a reference spectrum which has equilibrium intensities.  The
NOE enhancement, as defined above, will be

η σ
SS

z,SS ref

ref

=
−

=
I I

I R

S

I
z

z

IS

I

z

z

,

,

0

0

In contrast to the transient experiment, the steady state enhancement only
depends on the relaxation of the receiving spin (here I); the relaxation rate
of the S spin does not enter into the relationship simply because this spin is
held saturated during the experiment.

5.1.4.3 NOESY

The dynamics of the NOE in NOESY are very similar to those for the
transient NOE experiment.  The key difference is that instead of the
magnetization of the S spin being inverted at the start of the mixing time,
the magnetization has an amplitude label which depends on the evolution
during tl.

Starting with equilibrium magnetization on the I and S spins, the z-
magnetizations present at the start of the mixing time are (other
magnetization will be rejected by appropriate phase cycling)

S t S I t Iz S z z I z0 01
0

1
0( ) = − ( ) = −cos cosΩ Ω         

The equation of motion for Sz is

90°
S

90°

(a)

(b)

Pulse sequence for recording
s t e a d y  s t a t e  N O E
enhancements.  Sequence (a)
involves selective irradiation of
the S spin leading to saturation.
Sequence (b) is used to record
the reference spectrum in
which the intensities are
unperturbed.

t1
t2τmix

Pulse sequence for NOESY.
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As before, the initial rate approximation will be used:
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Integrating gives
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After the end of the mixing time, this z-magnetization on spin S is rendered
observable by the final 90° pulse; the magnetization is on spin S, and so will
precess at ΩS during t2.

The three terms {a}, {b} and {c} all represent different peaks in the
NOESY spectrum.

Term {a} has no evolution as a function of t1 and so will appear at F1 = 0;
in t2 it evolves at ΩS.  This is therefore an axial peak at {F1,F2} = {0, ΩS}.
This peak arises from z-magnetization which has recovered during the
mixing time.  In this initial rate limit, it is seen that the axial peak is zero for
zero mixing time and then grows linearly depending on RS and σIS.

Term {b} evolves at ΩI during t1 and ΩS during t2; it is therefore a cross
peak at {ΩI, ΩS}.  The intensity of the cross peak grows linearly with the
mixing time and also depends on σIS; this is analogous to the transient NOE
experiment.

Term {c} evolves at ΩS during t1 and Ω S during t2; it is therefore a
diagonal peak at {ΩS, ΩS} and as Rsτm << 1 in the initial rate, this peak is
negative.  The intensity of the peak grows back towards zero linearly with
the mixing time and at a rate depending on RS.  This peak arises from S spin
magnetization which remains on S during the mixing time, decaying during
that time at a rate determined by RS.

If the calculation is repeated using the differential equation for Iz a
complimentary set of peaks at {0, ΩI}, {ΩS, ΩI} and {ΩI, ΩI} are found.

It will be seen later that whereas RI and RS are positive, σIS can be either
positive or negative.  If σIS is positive, the diagonal and cross peaks will be
of opposite sign, whereas if σIS is negative all the peaks will have the same
sign.

IΩ

IΩ

SΩ

SΩF1

F2

{a}

{b}

{c}

0
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5.2 Theory of transition rates

In the previous sections it has been seen that populations can be related to
longitudinal magnetization and as a result the return of such magnetization
to its equilibrium value is brought about by transitions between the spin
energy levels.  In this section the details of how these transitions come about
are explored and a theory is developed which relates the transition rate for a
macroscopic sample to the physical properties of the sample.  In particular,
it will be seen that the correlation time, which is characteristic of molecular
motion, plays an important part in determining the rate of relaxation.

The theory will, of course, be based on quantum mechanics and will use
many of the techniques and ideas which were introduced in Section 1 for
dealing with the case of a spin subject to longitudinal and transverse
magnetic fields.  As was previously the case, it will be important to consider
both the behaviour of individual spins as well as the behaviour of the overall
sample i.e. the ensemble.

Anticipating the final result, what will be found is that transitions
between the spin states are promoted by transverse magnetic fields (that is,
fields in the xy-plane) which have components oscillating at frequencies
close to the Larmor frequency.  This is not a surprising outcome, as such an
oscillating magnetic field is precisely that supplied by a resonant
radiofrequency pulse.  Longitudinal magnetic fields, where oscillating or
not, do not cause transitions.

In relaxation, the magnetic fields which cause these transitions acquire
their time dependence from molecular motion.  Such motion is very
complex but, when its effect is averaged over a macroscopic sample, it turns
out that it can be characterised by just a few parameters.

To simplify matters as much as possible, this section will consider the
simplest possible case which is a sample consisting of molecules each of
which contains just a single spin-half nucleus.  It will be assumed that there
is a source of time varying magnetic fields in the sample – for example, this
might be due to the presence of a dissolved paramagnetic species whose
unpaired electrons give rise to local magnetic fields.

Before embarking on the calculation, some background material
concerning quantum mechanics and correlation functions will be
introduced.

5.2.1 Quantum mechanical background

Further details of the ideas which are briefly reviewed in this Section are to
be found in Lecture 1.

The wavefunction for each spin in the sample is written as a
superposition state

ψ α βα βt c t c t( ) = +( ) ( ) [3]

where cα(t) and cβ(t) are complex coefficients.  Note that the spin is neither
in the α state, nor the β state, but has a probability c cα α

*  of being found in
the α state, and c cβ β

*  of being in β.

The wavefunction evolves in time according to the time-dependent
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Schrödinger equation

d
d
ψ ψt

t
iH t

( ) = − ( )

where H is the relevant hamiltonian.  For a spin in a static magnetic field (of
strength B0) along the z-axis, the hamiltonian (called the static hamiltonian,
H0) is

H Iz0 0= ω
where ω0 = γB0, the Larmor frequency.  The functions α  and β  are
eigenfunctions of H0

H H0
1
2 0 0

1
2 0α ω α β ω β= = −          

with eigenvalues ± 1
2 0ω   It is easy to solve the time-dependent Schrödinger

equation to find how the coefficients cα and cβ vary with time; the result is

c t c i t c t c i tα α β βω ω( ) ( )exp ( ) ( )exp= −( ) = ( )0 01
2 0

1
2 0          

In words, this says that the phase of each wavefunction oscillates at a
frequency characteristic of its energy.  Note, however, that there is no
mixing between the α and β states – c cα α

*  and c cβ β
*  remain constant under

this evolution

c t c t c i t c i t c cα α α α α αω ω( ) = −( ) −( )[ ] ( )* *( ) ( )exp ( )exp ( )0 0 0 01
2 0

1
2 0

*
=

An alternative way of writing the super-position state, Eq. [3], is to
include the phase oscillation due to evolution under H0 ( = ω0Iz) explicitly

ψ ω α ω βα βt c t i t c t i t( ) = −( ) + ( )( )exp ( )exp1
2 0

1
2 0 [17]

It is easy to show that, if the wavefunction is written in this way, the
coefficients cα(t) and cβ(t) do not vary with time during evolution under the
hamiltonian H0 = ω0Iz.

5.2.2 Correlation functions

In this section some of the properties of random functions will be described
as these play a crucial role in the development of the theory of relaxation
rates.

To make the discussion concrete, suppose that a spin in a sample
experiences a magnetic field due to a dissolved paramagnetic species.  The
size of the magnetic field will depend on the relative orientation of the spin
and the paramagnetic species, and as both are subject to random thermal
motion, this orientation will vary randomly with time (it is said to be a
random function of time), and so the magnetic field will be a random
function of time.  Let the field experienced by this first spin be F1(t).

Now consider a second spin in the sample.  This also experiences a
random magnetic field, F2(t), due to the interaction with the paramagnetic
species.  At any instant, this random field will not be the same as that
experienced by the first spin.

For a macroscopic sample, each spin experiences a different random
field, Fi(t).  There is no way that a detailed knowledge of each of these
random fields can be obtained, but in some cases it is possible to
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characterise the overall behaviour of the system quite simply.

The average field experienced by the spins is found by taking the
ensemble average – that is adding up the fields for all members of the
ensemble (i.e. all spins in the system)

  F t F t F t F t( ) = ( ) + ( ) + ( ) +1 2 3 K

For random thermal motion, this ensemble average turns out to be
independent of the time; this is a property of stationary random functions.
Typically, the Fi(t) are signed quantities, randomly distributed about zero,
so this ensemble average will be zero.

An important property of random functions is the correlation function,
G(t,τ), defined as

G t F t F t F t F t F t F t

F t F t

, * * *

*

τ τ τ τ

τ

( ) = ( ) +( ) + ( ) +( ) + ( ) +( ) +

= ( ) +( )
1 1 2 2 3 3 K

F1(t) is the field experienced by spin 1 at time t, and F1(t+τ) is the field
experienced at a time τ later.  If the time τ is short the spins will not have
moved very much and so F1(t+τ) will be very little different from F1(t).  As
a result, the product F t F t1 1( ) +( )* τ  will be positive.  This is illustrated in the
figure below, plot (b).

5-1.2 5-1.2 5-1.2

F(t) F(t)F(t+1) F(t)F(t+15)(a) (b) (c)

(a) is a plot of the random function F(t) against time; there are about 100 separate time points.  (b) is a
plot of the value of F multiplied by its value one data point later – i.e. one data point to the right; all
possible pairs are plotted.  (c) is the same as (b) but for a time interval of 15 data points.  The two
arrows indicate the spacing over which the correlation is calculated.

The same is true for all of the other members of then ensemble, so when the
F t F ti i( ) +( )* τ  are added together for a particular time, t, – that is, the
ensemble average is taken – the result will be for them to reinforce one
another and hence give a finite value for G(t,τ).

As τ gets longer, the spin will have had more chance of moving and so
F1(t+τ) will differ more and more from F1(t); the product F t F t1 1( ) +( )* τ
need not necessarily be positive.  This is illustrated in plot (c) above.  The
ensemble average of all these F t F ti i( ) +( )* τ  is thus less than it was when τ
was shorter.  In the limit, once τ becomes sufficiently long, the
F t F ti i( ) +( )* τ  are randomly distributed and their ensemble average, G(t,τ),
goes to zero.  Clearly, from its definition, G(t,τ) has its maximum value at τ
= 0.

For stationary random functions, the correlation function is independent
of the time t; it will therefore be written G(τ).  In addition, for such random
functions averaging over the ensemble is equivalent to averaging over the
time t.  So, for example, the value of G (τ) can be found by taking the
average of the values plotted in (b) or (c) above. It is clear that for the data

a

b

c

d

Visualization of the different
timescales for random motion.
(a) is the starting position: the
black dots are spins and the
open circle represents a
paramagnetic species.  (b) is a
snap shot a very short time
after (a); hardly any of the spins
have moved.  (c) is a snapshot
at a longer time; more spins
have moved, but part of the
original pattern is st i l l
discernible.  (d) is after a long
time, all the spins have moved
and the original pattern is lost.
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in plot (c) the average will be much less than for that in plot (b).

The correlation function, G(τ), is thus a function which characterises the
memory that the system has of a particular arrangement of spins in the
sample.  For times τ which are much less than the time it takes for the
system to rearrange itself G(τ) will be close to its maximum value.  As time
proceeds, the initial arrangement becomes more and more disturbed, and
G(τ) falls.  For sufficiently long times, G(τ) tends to zero.

The simplest form for G(τ) is

G Gτ τ τ( ) = ( ) −( )0 exp c [18]

the variable τ appears as the modulus, resulting in the same value of G(τ)
for positive and negative values of τ.  This means that the correlation is the
same with time τ before and time τ after the present time.

τc is called the correlation time.  For times much less than the correlation
time the spins have not moved much and the correlation function is close to
its original value; when the time is of the order of τc significant
rearrangements have taken place and the correlation function has fallen to
about half its initial value.  For times much longer than τc the spins have
moved to completely new positions and the correlation function has fallen
close to zero.

5.2.3 Spectral densities

The correlation function is a function of time, just like a free induction
decay.  So, it can be Fourier transformed to give a function of frequency.
The resulting frequency domain function is called the spectral density; as
the name implies, the spectral density gives a measure of the amount of
motion present at different frequencies.  The spectral density is usually
denoted J(ω)

G Jτ ω( )  → ( )Fourier Transform

If the spins were executing a well ordered motion, such as oscillating
back and forth about a mean position, the spectral density would show a
peak at that frequency.  However, the spins are subject to random motions
with a range of different periods, so the spectral density shows a range of
frequencies rather than having peaks at discreet frequencies.

Generally, for random motion characterised by a correlation time τc,
frequencies from zero up to about 1/τc are present.  The amount of higher
frequencies then begins to tail off quite rapidly, so that the amount of
motion with frequency much greater than 1/τc is quite low.

For a simple exponential correlation function, given in Eq. [18], the
corresponding spectral density is a lorentzian

exp −( )  →
+

τ τ τ
ω τc

Fourier Transform c

c
2

2
1 2

This function is plotted in the margin; note how it drops off significantly
once the product ωτc begins to exceed ~1.

0

0

0

G(  )
G(0)

ττ

τ

c

0 1 2 3 4 5
0

J(  )ω

ωτc

Plot of the spectral density as a
function of the dimensionless
variable ωτc.  The curve is a
lorentzian
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The plot opposite compares the spectral densities for three different
correlation times; curve a is the longest, b an intermediate value and c the
shortest.  Note that as the correlation time decreases the spectral density
moves out to higher frequencies.  However, the area under the plot remains
the same, so the contribution at lower frequencies is decreased.  In
particular, at the frequency indicated by the dashed line the contribution at
correlation time b is greater than that for either correlation times a or c.

For this spectral density function, the maximum contribution at
frequency ω is found when τc is 1/ω.  This will turn out to be important later
on.

5.2.4 Calculation of the transition rate

5.2.4.1 General approach

The transition rate constant between the β and α states will be computed
using the following method:

(a) At time zero it will be assumed that the spins are in the β state.

(b) The evolution of the spins under the influence of a time dependent
random hamiltonian, H1(t), will then be calculated; H1(t) represents the
random fields which are acting on the spins.

(c) After time t each spin will have evolved from the state β  to the
superposition state c t c tα βα β( ) ( )+ ; the population of the α state is
therefore c t c tα α( ) ( )* .

(d) As the spins started in the β state, the rate of change of the population of
the α state is equal to the transition rate constant for β → α.

5.2.4.2 Equation of motion

As was discussed in Section 5.2.1, the superposition state can be written as

ψ ω α ω βα βt c t i t c t i t( ) = −( ) + ( )( )exp ( )exp1
2 0

1
2 0 [17]

where the phase oscillation due to evolution under the static Hamiltonian H0

( = ω0Iz) is included explicitly; the coefficients cα(t) and cβ(t) do not vary
with time when the evolution is just under H0.

The evolution under the combined effects of the static hamiltonian, H0,
and the random hamiltonian H1(t) can be found from the time dependent
Schrödinger equation:

d
d
ψ ψt

t
i H H t t

( ) = − + ( ){ } ( )0 1 [19]

Inserting ψ(t) from Eq. [17] into the left-hand side of [19] gives

d
d

d
d

d
d

d

d

ψ ω α ω β

ω ω α ω α

ω ω β

α β

α
α

β
β

t

t t
c t i t c t i t

i c t i t
c t

t
i t

i c t i t
c t

( ) = −( ) + ( )[ ]
= − −( ) + −( )

+ ( ) +

( )exp ( )exp

( )exp
( )

exp

( )exp
( )

1
2 0

1
2 0

1
2 0

1
2 0

1
2 0

1
2 0

1
2 0 tt

i texp 1
2 0ω β( )

Likewise with the right-hand side

00

J(  )ω

ω

a

b

c
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− + ( ){ } ( )

= − + ( ){ } −( ) + ( )[ ]
= − −( ) ( ) − ( ) ( )
− −

i H H t t

i H H t c t i t c t i t

ic t i t H t ic t i t H t

ic t

0 1

0 1
1
2 0

1
2 0

1
2 0 1

1
2 0 1

1

ψ

ω α ω β

ω α ω β

α β

α β

α

( )exp ( )exp

( )exp ( )exp

( )exp 22 0 0
1
2 0 0

1
2 0 1

1
2 0 1

1
2 0

1
2 0

1
2 0

1
2 0

i t H ic t i t H

ic t i t H t ic t i t H t

i c t i t i c t i t

ω α ω β

ω α ω β

ω ω α ω ω β

β

α β

α β

( ) − ( )
= − −( ) ( ) − ( ) ( )
− −( ) + ( )

( )exp

( )exp ( )exp

( )exp ( )exp

where to get to the last line the fact that α  and β  are eigenfunctions of
H0 has been used (Section 1.4.1.1)

H I Hz0 0
1
2 0 0

1
2 0α ω α ω α β ω β= = = −

Equating the left and right hand sides and multiplying from the left by α
gives

− −( ) + −( )

+ ( ) + ( )
= − −( ) ( ) −

1
2 0

1
2 0

1
2 0

1
2 0

1
2 0

1
2 0

1
2 0 1

i c t i t
c t

t
i t

i c t i t
c t

t
i t

ic t i t H t ic t

ω ω α α ω α α

ω ω α β ω α β

ω α α

α
α

β
β

α β

( )exp
( )

exp

( )exp
( )

exp

( )exp ( )

d
d

d

d

expexp

( )exp ( )exp

1
2 0 1

1
2 0

1
2 0

1
2 0

1
2 0

i t H t

i c t i t i c t i t

ω α β

ω ω α α ω ω α βα β

( ) ( )
− −( ) + ( )

The functions α  and β  are orthonormal (Section 1.3.2)

α α α β= =1 0

So, using this and cancelling common terms, the previous equation
simplifies to

d
d

c t

t
i t

ic t i t H t ic t i t H t

α

α β

ω

ω α α ω α β

( )
exp

( )exp ( )exp

−( )
= − −( ) ( ) − ( ) ( )

1
2 0

1
2 0 1

1
2 0 1

Finally, multiplying both sides by exp 1
2 0i tω( ) and defining

H t H t H t H tαα αβα α α β( ) = ( ) ( ) = ( )1 1

gives

d
d

c t

t
ic t H t ic t i t H tα

α αα β αβω( )
( ) ( )exp= − ( ) − ( ) ( )0 [20]

The interpretation of this equation is that Hαβ is a measure of the "ability" of
the random hamiltonian to transform the spin from state β to state α.  For
example if H1 is of the form cIx then

Hαβ = α β α β αcI c c cx = +{ } =1
2

1
2

but if H1 is of the form cIz

Hαβ = α β α βcIz = −{ } =1
2 0

So it is clear that to cause transitions from β to α the random hamiltonian
needs to have transverse operators in it i.e. there must be transverse
magnetic fields present.
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In contrast, the term Hαα is a measure of the extent to which the random
hamiltonian leaves the initial state unperturbed; this term does not represent
transitions between the two states.

The exponential term, exp i tω0( ), arises from the phase oscillation of the
two states α and β .  Recall that these states have a phase oscillation at

  m
1
2 0ω t( ) respectively.  The term in Eq. [20] thus represents their relative

phase oscillation.

5.2.4.3 Integration in the initial rate

Starting from the equation of motion, Eq. [20], it is assumed that

(1) At time zero the spin is entirely in the β state, so that cα ( )0 0=  and
cβ ( )0 1= .

(2) The initial rate approximation may be applied, so that cα(t)  and cβ(t) on
the right hand side of Eq. [20] can be replaced by their values at time 0

With these assumptions the equation can be integrated

d
d

d d

d

init

c t

t
i i t H t

c t i i t H t t

c t i i t H t t

t t

t

α
αβ

α αβ

α αβ

ω

ω

ω

( )
exp

( ) exp ' ' '

( ) exp ' ' '

= − ( ) ( )

= − ( ) ( )

= − ( ) ( )

∫ ∫

∫

0

0

0

0

0

0

[21]

As the initial rate assumption has been made, this relationship will only be
valid for short times, such that the coefficients have not deviated too much
from their initial values.

Interpretation – constant field

Suppose that a constant magnetic field is applied along the x direction; H1(t)
is εIx and so Hαβ = 1

2 ε.  The integral in Eq. [21] is then straightforward

c t i i t t i i t
t

α ε ω ε ω( ) exp ' ' exp= − ( ) = − ( ) −[ ]∫1
2 0

0

1
2 0 1d

It appears that there is a contribution to the coefficient cα(t).  However, this
contribution simply oscillates back and forth at the Larmor frequency, ω0,
and so averaged over time there is no net change in cα(t).  Recall that the
Larmor frequency is typically hundreds of MHz, so on the timescale of
relaxation, an enormous number of Larmor periods will have elapsed.

Thus it is concluded that a constant transverse magnetic field causes no
net transfer from β to α.

Interpretation – oscillating field

Suppose that an oscillating magnetic field is applied along the x direction;
H1(t) is ε ωcos t Ix( )  and so H t Ixαβ ε ω= ( )1

2 cos .  The integral in Eq. [21] is
then straightforward
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c t i i t t t

i t t t t t t

t

t t

α ε ω ω

ε ω ω ε ω ω

( ) exp ' cos ' '

cos ' cos ' ' sin ' cos ' '

= − ( ) ( )

= − ( ) ( ) + ( ) ( )

∫

∫ ∫

1
2 0

0

1
2 0

0

1
2 0

0

d

d d

The second term on the right always averages to zero when considered over
many Larmor periods.  The first term on the right can be written

− ( ) ( )

= − +( ) + −( )









∫

∫ ∫

i t t t

i t t t t t t

t

t t

1
2 0

0

1
4 0

0

0

0

ε ω ω

ε ω ω ω ω

cos ' cos ' '

cos ' ' ' cos ' ' '

d

d d

Both of these terms are integrals of oscillating functions, and so will
average to zero over time except in the case where ω = ω0.  The cosine term
on the right is then 1 and the integral becomes −i t1

4 ε .

This is precisely as expected, only if the transverse field is oscillating at
or near the Larmor frequency will there be any significant probability of
driving the spins from one state to another.

5.2.4.4 Piecewise approximation

The two special cases considered at the end of the previous section are
useful in understanding what Eq. [21] means, but they are not representative
of the problem in hand which is the case where Hαβ(t) is a random function.
One way to approach this is to imagine that for a sufficiently short period, δ,
Hαβ(t) is constant between time t and time t + δ.  During this period, it will
be possible to integrate Eq. [21].

In detail, the approach is to imagine that time is divided into small
periods of length δ.  Between time nδ and (n + 1)δ it is supposed that Hαβ(t)
is constant with value Hn.  The integral in Eq. [21] is then evaluated
between time nδ and (n + 1)δ

d dc t i i t H t

c c
iH

i
i n i n

H
i n i

H
i

n

n

n

n

n

n n n

n

n

α
δ

δ

δ

δ

α α

ω

ω
ω δ ω δ

ω
ω δ ω δ

ω

( ) exp ' '

exp exp

exp exp

exp

+( ) +( )

+( ) ( )

∫ ∫= − ( )

− = − +( )( ) − ( )[ ]

= − ( ) ( ) −[ ]

= −

1

0

1

1

0
0 0

0
0 0

0

1

1

ωω δ ω δ

δ ω δ

0 0

0

1 1n i

iH i nn

( ) + −[ ]
= − ( )exp

where on the fourth line it has been assumed that ω0δ is small so that the
approximation exp(x) ≈ 1 + x can be used.  The value of the coefficient cα at
time nδ has been written c n

α
( ) .

To find the value of this coefficient after N steps, all that is required is to
add up the differences:
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c c c c c c c

i H in

N

n
n

N

α α α α α α α

δ ω δ

( ) ( ) ( ) ( ) ( ) ( ) ( )

=

= −{ } + −{ } + −{ } +

= − ( )∑

1 0 2 1 3 2

0
0

K

exp

Defining the differences as ∆c c cn n n
α α α
( ) +( ) ( )= −1 , this last relationship can be

expressed as

c cN n

n

N

α α
( ) ( )

=

= ∑∆
0

where, from the above

∆c iH i nn
nα δ ω δ( ) = − ( )exp 0

Graphical interpretation

The coefficient cα is complex, so each of the c n
α
( )  can be imagined as being a

point on the complex plane, where the x- and y-coordinates are the real and
imaginary parts of c n

α
( ) .  The difference, ∆c n

α
( ), can therefore be thought of

as a vector joining the points c n
α
( )  and c n

α
+( )1 .  This is illustrated opposite.

The overall motion can thus be thought of as a series of small steps, each
represented by one of the ∆c n

α
( ).  The final value of c N

α
( )  depends on the

vector sum of these small steps.  This is illustrated opposite for the case of
seven steps; note that as the coefficient cα starts at zero, so does the first
vector.

There are two factors which influence the length and direction of each of
the vectors which represent the ∆c n

α
( ), given by

∆c iH i nn
nα δ ω δ( ) = − ( )exp 0

The length is given by the square modulus of ∆c n
α
( ):

∆c Hn
nα δ( ) =

2 2 2

This varies as for different n the size of the random fields (which are
represented by Hn) vary.

The direction of the vector is given by the phase of ∆c n
α
( ).  As Hn may be

complex, the phase has two parts: one from Hn and one of size ω δ0n  from
the exponential term.  The latter part of the phase increments regularly as
time (the index n) increases; note that for the nth step, the phase is that
acquired during the time from zero up until the time nδ.

To see the effect of these two phases, consider first a case where Hn is
constant, and the delay δ is chosen so that ω δ π0 4= .  Each vector
representing ∆c n

α
( ) thus differs in phase by 45° from the previous one, but

the vectors are all of the same length.  The diagram opposite shows the
motion during 8 steps.

Clearly, after 8 steps the coefficient cα returns to zero.  In fact further
steps will just take the coefficient round and round this approximate circle,
never deviating far from zero.  One complete circuit is completed each
Larmor period.  This situation is exactly that described in Section 5.2.4.3; a
constant transverse field does not, when averaged over many Larmor
periods, lead to a significant transfer from one spin state to the other.

c(n)
α

∆c(n)
α

c(n+1)
α

c(7)
α

1
2

34

5

6

1

28

3
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It is clear looking at the diagram that for the coefficient cα to move
steadily away from zero the arrows representing the ∆c n

α
( ) need to lie in

more or less the same direction on each step.  The phase term ω δ0n
naturally turns successive vectors away from one another, so to keep them
aligned the term Hn (the random hamiltonian) must provide a phase which
cancels out that due to ω δ0n .

An example would be if Hn were of the form

cos ω δ0n( )
i.e. a field which is oscillating at the Larmor frequency.  The Hn would then
be, for the 8 steps, 1, 1 2 , 0, – 1 2 , –1, –1 2 , 0, 1 2 .  The diagram
opposite shows the effect that these factors have on the motion of the
vectors.  Now, rather than the sum of the vectors returning to the origin, the
final position has moved away from the starting position.  Further steps will
continue to move it away.  This is the same result as in Section 5.2.4.3; a
transverse field which is oscillating at the Larmor frequency will drive the
spin from the β to the α state.

If the Hn are random, it is clear that the situation will be intermediate
between the two extremes discussed here.  It may be anticipated that the
component of the motion of Hn which is at the Larmor frequency will be
that part which is effective at driving the spin from the β to the α state.  The
details of how this comes about will be seen in the next section.

5.2.4.5 Ensemble average

The results obtained in the previous sections are just for a single spin.  In
order to translate these into the observed behaviour of a macroscopic NMR
sample it is necessary to take the ensemble average.  This is done in the
usual way by adding up the contribution from each member of the
ensemble.

The first thing to establish is that this motion under a random hamiltonian
does not generate any coherences.  As was seen in Section 1.6, coherences
arise when the ensemble average of products such as c cα β

*  are non zero.
From Section 5.2.4.4 it was shown that cα at time Nδ is given by

c i H inN
n

n

N

α δ ω δ( )

=

= − ( )∑ exp 0
0

and, as the initial rate has been assumed, cβ is still very close to 1.
Therefore the ensemble average of c cα β

*  is

  
c c i H in i H inN

n
n

N

n
n

N

α β δ ω δ δ ω δ( ) ( )

=

( )

=

= − ( ) − ( ) −∑ ∑* exp exp1
0

0

2
0

0

K

where Hn
i( )  are the values of Hn for the ith member of the ensemble.  This

average can be written

c c i H inN
n

n

N

α β δ ω δ( )

=

= − ( )∑* exp 0
0

where Hn  is the ensemble average of the Hn.  It is usually the case that the
random fields which cause relaxation have zero mean (or, they are defined

1

2 4

5

6 8
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as such), so this ensemble average is zero.  In words, no coherences are
generated by the action of this random hamiltonian.

The probability of finding the spin in the α level is c cα α
*

c c i H in i H im

i H in i H im

H H

N N
n

n

N

m
m

N

n
n

N

m
m

N

n m

α α δ ω δ δ ω δ

δ ω δ δ ω δ

δ

( ) ( )

= =

= =

= − ( )







 − ( )









= − ( )







 −( )









=

∑ ∑

∑ ∑

*

*

*

*

exp exp

exp exp

exp

0
0

0
0

0
0

0
0

2 ii n m
m

N

n

N

−( )( )
==

∑∑ ω δ0
00

and this can be used to give the population of the α level, Pα, by taking the
ensemble average.  As before, it is just the H Hn m

*  term which is averaged

P c c H H i n mN N N
n m

m

N

n

N

α α α δ ω δ( ) ( ) ( )

==

= = −( )( )∑∑* * exp2
0

00

[22]

The ensemble average of H Hn m
*  is just the correlation function.  Recall from

Section 5.2.2 that the correlation function of a function F(t) is defined as

G F t F tτ τ( ) = ( ) +( )*

Here Hn corresponds to time nδ and Hm to time mδ, so τ is (m – n)δ.  So,
defining

G m n H Hn m−( )( ) =δ *

Eq. [22] can be written

P G m n i n mN

m

N

n

N

α δ δ ω δ( )

==

= −( )( ) −( )( )∑∑2
0

00

exp

Interpretation

Another way of writing c cN N
α α
( ) ( )* is to use

c cN n

n

N

α α
( ) ( )

=

= ∑∆
0

so that

c c c c

c c

N N n

n

N
m

m

N

n

n

N
m

m

N

α α α α

α α

( ) ( ) ( )

=

( )

=

( )

=

( )

=

=



















=

∑ ∑

∑∑

*

*

*

∆ ∆

∆ ∆

0 0

00

If the vector picture for the c n
α
( )  and ∆c n

α
( ) is used, then c cN N

α α
( ) ( )* is

interpreted as the square of the length of the vector c N
α
( ) ; c cN N

α α
( ) ( )* is like the

dot-product of a vector with itself, which is how the length of a vector is
computed.

Recall that c N
α
( )  gives the final position of the coefficient after N steps.

However, of interest is just the probability of the spin being in state α, not
the actual coefficient cα.  Thus it is the length (or magnitude) of the vector
representing c N

α
( )  that is needed; its phase is irrelevant.
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The vector c N
α
( )  is seen as the sum of the individual vectors ∆c n

α
( ).

Consider the case where there are just three vectors contribution to the sum,
and let these vectors be a, b and c representing ∆cα

0( ), ∆cα
1( )  and ∆cα

2( ); let the
sum be the vector S, representing cα

2( ) .

In vector notation, S is

S a b c= + +
the square of the length of S, S 2 , is

S S S a b c a b c

a a b b c c a b a c b a b c c a c b

2 = ⋅ = + +( ) ⋅ + +( )
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

So, it is seen that the length of the resultant vector S depends on all possible
dot products between its constituent vectors, a, b and c.  As these vectors
correspond to different times, it is implied that the final result depends on
the correlation between events at different times, which is precisely the
result found above.

5.2.4.6 Computation of the transition rate

The population of the state α is expected to obey the differential equation

d
d
P

t
W P W Pα

βα β αβ α= −

However, in this case it has been supposed that the initial rate limit applies
and that at time zero all the spins are in the β state.  So, on the right hand
side, Pβ = 1 and Pα = 0.  Therefore

d
d
P

t
Wα

βα=

Using the piecewise approximation the derivative is found by taking the
difference between successive values of Pα

d
d
P

t

P PN N
α α α

δ
= −+( ) ( )1

Using Eq. [22] for the P N
α
( ) , and after some careful algebra it is found that

W G p ip
p

N

βα δ δ ω δ= ( ) ( )
=

∑2
0

0

exp

The sum can be recognized as the Fourier coefficient at ω0 of the correlation
function G(pδ).  In words, the transition rate constant depends on the
spectral density at the Larmor frequency.  It has been seen earlier in a
qualitative way that it is only if the random hamiltonian has components at
the Larmor frequency that there is a significant probability of driving the
spin from one state to another.  This conclusion has now been put onto a
firm foundation.

5.2.4.7 Integral form

The piecewise approximation introduced in Section 5.2.4.4 is convenient for
trying to understand the nature of relaxation, but it is not really very
convenient for making further calculations.  To make further progress it is

a

b

c

S
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best to use the integral rather than the discrete sum.  The start is Eq. [21]

c t i i t H t t
t

α αβω( ) exp ' ' '= − ( ) ( )∫ 0

0

d [21]

As was shown in Section 5.2.4.6, the rate of change of Pα gives Wβα,
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d
d
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Equation [21] gives a value for cα, and its derivative can be found simply by
removing the integration from Eq. [21]
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∫
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The ensemble average of the right-hand side has to be computed.  The two
relevant parts are

G t t H t H t G t t H t H tαβ αβ αβ αβ αβ αβ' ' ' '* * *−( ) = ( ) ( ) −( ) = ( ) ( )   and   

If it is assumed that the random processes are stationary, then the correlation
function Gαβ will only depend on the difference (t – t') = τ.  So the two
integrals become

W i t t G t i t t G t
t t

βα αβ αβω τ ω τ= −( )( ) ( ) + − −( )( ) ( )∫ ∫exp ' ' exp ' '*
0

0

0

0

d d

Changing the variable of integration from t to τ gives

W i G i G
t t

βα αβ αβω τ τ τ ω τ τ τ= −( ) ( ) + ( ) ( )∫ ∫exp exp *
0

0

0

0

d d

The argument now goes that once τ significantly exceeds the correlation
time the correlation function G(τ) falls very close to zero.  As a result,
provided that the theory is only used to predict the rate of transitions for
periods much greater than the correlation time (which is easily satisfied), the
upper limit of the integral can be extended to infinity.

To further simplify matters it will be assumed that the correlation
function is real.  Then it follows that
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W i i G
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ω τ τ τ
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The integral is recognized as the Fourier coefficient of Gαβ(τ) at the Larmor
frequency ω0.  If the spectral density, Jαβ(ω), is defined as

J Gβα αβω ωτ τ τ( ) = ( ) ( )
∞

∫ cos
0

d

then

W Jβα βα ω= ( )2 0

This is the final result.  It says that the transition rate depends on the spectral
density of the Larmor frequency, and this in turn depends on the correlation
function.  If a model exists for the correlation function, then it is possible to
predict the value of Wβα.

5.2.4.8 Correlation functions again

In Section 5.2.2 the idea of a correlation function was introduced, with the
definition

G F t F tτ τ( ) = ( ) +( )*

In the calculation carried out in the previous Sections, the random function
F(t) is Hαβ(t) where

H t H tαβ α β( ) = ( )1

The hamiltonian, H1(t), often consists of a time dependent part, Y(t),
multiplied by a spin operator, A.  In this case

H t H t

Y t A Y t A

αβ

αβ

α β

α β

( ) = ( )
= ( ) = ( )

1

where A Aαβ α β= .  The correlation function is thus

G H t H t

Y t Y t A A

Y t Y t A

τ τ

τ

τ

αβ

αβ αβ

αβ

( ) = ( ) +( )

= ( ) +( )

= ( ) +( )

1 1

2

*

* *

*

The value of Y t Y t( ) +( )* τ  is clearly a maximum when τ = 0, so defining

Y t Y t Y( ) +( ) =* 0 2

The correlation function, Gαβ(τ) can be written

G A Y gαβ αβτ τ( ) = ( )
2 2

where g(τ) is a reduced correlation function which takes the value 1 when τ
= 0.

The corresponding spectral density function, Jαβ(ω), is
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J A Y jαβ αβω ω( ) = ( )
2 2

where j(ω) is the Fourier transform of g(τ).

Using this, the transition rate calculated in the previous section can be
written

W J

A Y j

βα βα

αβ

ω

ω

= ( )
= ( )

2

2

0

2 2
0

[23]

This form emphasises that there are three contributing parts to the transition
rate.  (1) A spin part, Aαβ , which is a measure of the extent to which the
spin operators present in the random hamiltonian are capable of
transforming the β state into the α state.  (2) A size factor, Y 2 , which gives
the absolute magnitude of the interaction causing the transition.  (3) The
spectral density at the Larmor frequency, which gives the amount of energy
available at the Larmor frequency.  This separation is a very useful way of
thinking about the contributions to the relaxation rate constant.

5.2.5 Example calculation

Suppose that the spin experiences a randomly fluctuating field which has
components in the x, y and z directions.  The random hamiltonian can be
written as

H t t I t I t Ix x y y z z1( ) = ( ) + ( ) + ( )ω ω ω [24]

where ωx(t) gives the size of the field (in angular frequency units) in the x
direction and so on for y and z.  Each term will be considered separately to
start with; why this is so will be considered later.  Taking just the x
component, the random hamiltonian is thus

H t t I Y t Ax x1( ) = ( ) ≡ ( )ω
So

Y t tx x x
2 20= ( ) +( ) =ω ω ω*

where the quantity on the extreme right is the ensemble average of the
square of the field in the x direction.

For the spin part

A A Ixαβ α β α β= = = 1
2

so Aαβ

2
1
4= .  The transition rate constant is therefore, according to Eq. [23]

W A Y j

j jx x

βα αβ ω

ω ω ω ω

= ( )
= ( ) = ( )

2

2

2 2
0

1
4

2
0

1
2

2
0

A similar calculation shows that the contribution from the field in the y
direction is similar

W jyβα ω ω= ( )1
2

2
0

The z component makes no contribution to the transition rate constant as the
matrix element Aαβ is zero
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A Izαβ α β= = 0

The total transition rate constant is

W j jx yβα ω ω ω ω= ( ) + ( )1
2

2
0

1
2

2
0

The rate constant for longitudinal relaxation, Rz, in such a system was
shown to be 2W (Section 5.1.2.2, assuming Wαβ = Wβα), so, assuming that
the random fields in the x and y directions have the same magnitude, ω 2

R jz = ( )2 2
0ω ω

5.2.6 Cross Correlation

Returning to the random hamiltonian of the previous section,

H t t I t I t Ix x y y z z1( ) = ( ) + ( ) + ( )ω ω ω [24]

the question arises as to whether it is valid to consider each term separately.
This idea will be explored by following through the calculation without this
assumption so as to highlight the differences.

The matrix element Hαβ(t) is

H t t I t I t i tx x y y x yαβ ω α β ω α β ω ω( ) = ( ) + ( ) = ( ) − ( )1
2

1
2

So the correlation function is
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where for simplicity it has been assumed that ωx and ωy are real.  The first
two terms are precisely those encountered in Section 5.2.5 in which the
terms in the hamiltonian were considered separately.  The remaining two
terms are new: they are called cross correlation terms as they involve two
different terms of the hamiltonian.

One interpretation of these cross correlation terms is that they are
associated with transitions in which the variation of the magnetic field
between time t and time (t + τ) is not due to the variation in one of the
sources of magnetic fields but due to the variation between two different
sources.

In the case described here, it is very likely that the two extra terms will
cancel one another out as physical intuition implies that

ω ω τ ω ω τx y y xt t t t( ) +( ) = ( ) +( )
i.e. the correlation of the x with the y field is identical to that of the y with
the x field.  The analysis in which the terms in the random hamiltonian were
considered separately is thus likely to be valid.

However, a situation where cross correlation does have an effect is when
there are two different sources of the same transverse component.

H t t I t Ix x x x1
1 2( ) = ( ) + ( )( ) ( )ω ω

In this case the correlation function is

F1(t)

F2(t)

a

b

c

τ

Computation of the correlation
function involves comparing
points a and b which are
separated by time but from the
same random function.  The
cross correlation function
involves comparing points a
and c, which are from different
random functions.
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Again, the first two terms  are just those expected from ignoring cross
correlation.  The second two describe a situation where the variation in the
magnetic field is due, as above, to the difference between the two different
sources of the magnetic field.

Assuming that

ω ω τ ω ω τ ω ω τx x x x x xt t t t g1 2 2 1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )( ) +( ) = ( ) +( ) = ( ),

where g 1 2,( )( )τ  is the reduced cross-correlation spectral density, the
contribution to the transition rate constant is

W jx xβα ω ω ωcross = ( )( ) ( ) ( )2 1 1 2
0

,

where j 1 2,( )( )ω  is the Fourier transform of g 1 2,( )( )τ .

Cross correlation arises when the same physical motion gives rise to the
varying magnetic fields from different sources.  It is often encountered
when the two sources of magnetic fields are in the same molecule; in such a
case, as the molecule tumbles the variation in the two fields is necessarily
correlated.  Further details are considered in Section 6.2.6 .

5.3 Relaxation mechanisms

So far, the source of the magnetic fields which give rise to relaxation and
the origin of their time dependence have not been considered.  Each such
source is referred to as a relaxation mechanism.  There are quite a range of
different mechanisms that can act, but of these only two are really important
for spin half nuclei.

5.3.1 The dipolar mechanism

Each spin has associated with it a magnetic moment, and this is turn gives
rise to a magnetic field which can interact with other spins.  Two spins are
thus required for this interaction, one to "create" the field and one to
"experience" it.  However, their roles are reversible, in the sense that the
second spin creates a field which is experienced by the first.  So, the overall
interaction is a property of the pair of nuclei.

The size of the interaction depends on the inverse cube of the distance
between the two nuclei and the direction of the vector joining the two
nuclei, measured relative to that of the applied magnetic field.  As a
molecule tumbles in solution the direction of this vector changes and so the
magnetic field changes.  Changes in the distance between the nuclei also
result in a change in the magnetic field.  However, molecular vibrations,
which do give such changes, are generally at far too high frequencies to give
significant spectral density at the Larmor frequency.  As a result, it is
generally changes in orientation which are responsible for relaxation.

The pair of interacting nuclei can be in the same or different molecules,
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leading to intra- and inter-molecular relaxation.  Generally, however, nuclei
in the same molecule can approach much more closely than those in
different molecules so that intra-molecular relaxation is dominant.

The size of the dipolar interaction depends on the product of the
gyromagnetic ratios of the two nuclei involved, and the resulting relaxation
rate constants depends on the square of this.  Thus, pairs of nuclei with high
gyromagnetic ratios are most efficient at promoting relaxation.  For
example, every thing else being equal, a proton-proton pair will relax 16
times faster than a carbon-13 proton pair.

It is important to realize that in dipolar relaxation the effect is not
primarily to distribute the energy from one of the spins to the other.  This
would not, on its own, bring the spins to equilibrium.  Rather, the dipolar
interaction provides a path by which energy can be transferred between the
lattice and the spins.  In this case, the lattice is the molecular motion.
Essentially, the dipole-dipole interaction turns molecular motion into an
oscillating magnetic field which can cause transitions of the spins.

In a molecule in which there are more than two spins, cross-correlation
between different dipolar interactions is likely to occur.  This is because the
same molecular motion affects the internuclear vectors of all possible spin
pairs in the molecule.  Some correlation between their motions is therefore
inevitable.

5.3.2 The chemical shift anisotropy mechanism

The chemical shift arises because, due to the effect of the electrons in a
molecule, the magnetic field experienced by a nucleus is different to that
applied to the sample.  In liquids, all that is observable is the average
chemical shift, which results from the molecule rapidly experiencing all
possible orientations by rapid molecular tumbling.

At a more detailed level, the magnetic field experienced by the nucleus
depends on the orientation of the molecule relative to the applied magnetic
field.  This is called chemical shift anisotropy (CSA).  In addition, it is not
only the magnitude of the field which is altered but also its direction.  The
changes are very small, but sufficient to be detectable in the spectrum and to
give rise to relaxation.

One convenient way of imagining the effect of CSA is to say that due to
it there are small additional fields created at the nucleus – in general in all
three directions.  These fields vary in size as the molecule reorients, and so
they have the necessary time variation to cause relaxation.  As has already
been discussed, it is the transverse fields which will give rise to changes in
population.

The size of the CSA is specified by a tensor, which is a mathematical
object represented by a three by three matrix.

σ
σ σ σ
σ σ σ
σ σ σ

=














xx xy xz

yx yy yz

zx zy zz
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The element σxz gives the size of the extra field in the x-direction which
results from a field being applied in the z-direction; likewise, σyz gives the
extra field in the y-direction and σzz that in the z-direction.  These elements
depend on the electronic properties of the molecule and the orientation of
the molecule with respect to the magnetic field.

Cross correlation between dipolar interactions and CSA is likely when
the spins are all in the same molecule as both interactions are modulated by
the same molecular motion.


