1 Introduction to quantum mechanics

Quantum mechanics is the basic tool needed to describe, understand and devise
NMR experiments. Fortunately for NMR spectroscopists, the quantum
mechanics of nuclear spins is quite straightforward and many useful
calculations can be done by hand, quite literally "on the back of an envelope".
This simplicity comes about from the fact that although there are a very large
number of molecules in an NMR sample they are interacting very weakly with
one another. Therefore, it is usually adequate to think about only one molecule
at a time. Even in one molecule, the number of spins which are interacting
significantly with one anotheri.€. are coupled) is relatively small, so the
number of possible quantum states is quite limited.

The discussion will begin with revision of some mathematical concepts
frequently encountered in quantum mechanics and NMR.

1.1 Mathematical concepts

1.1.1 Complex numbers

An ordinary number can be thought of as a point on a line which extends from
minus infinity through zero to plus infinity. gomplex number can be thought

of as a point in a plane; thecoordinate of the point is thesal part of the
complex number and thecoordinate is themaginary part.

imaginary
=3

!

If the real part isa and the imaginary part is, the complex number is

written as & + ib) wherei is the square root of —1. The idea that 1 (orin
general the square root of any negative number) might have a "meaning” i one

a real

complex number can be

of the origins of complex numbers, but it will be seen that they have many m@tgh of as a point in the

; i i complex plane with a real part
uses than simply expressing the square root of a negative number. (8) and an imaginary part (b),

i appears often and it is important to get used to its properties:

i2=4-1x4/-1=-1
i*=ixi?=-

it =i%xi%®=+1

1 ' L .
T= g%g { multiplying top and bottom by i}

The complex conjugate of a complex number is formed by changing the sign
of the imaginary part; it is denoted by a *

(a+ib)* =(a-ib)




o Im

r

0

a4 Re

An alternative representation of
a complex number is to specify
a distance, r, and an angle, 6.

The square magnitude of a complex numbas denotedC|? and is found
by multiplyingC by its complex conjugatéc]’ is always real

if C=(a+ib)

Ic? =CcxC*
=(a+ib)(a-ib)
:a2 +b2

These various properties are used when manipulating complex numbers:

addition: (a+ib)+(c+id) =(a+c)+i(b+d)
multiplication: (a+ib) x(c+id) = (ac-bd) +i(ad + bc)
division:

Ei::g - Ei:ii(?; * Eﬁi:g: {multiplying top and bottom by (c +id)*}
_(a+ib)(c+id)* _(a+ib)(c-id) _(ac+bd) +i(bc- ad)
(Cz+d2) (c2+d2) (C2+d2)

Using these relationships it is possible to show that

(CxDxEx..)*=(C*xD*xE*x..)

The position of a number in the complex plane can also be indicated by the
distancey, of the point from the origin and the ang between the real axis

and the vector joining the origin to the point (see opposite). By simple
geometry it follows that
Rd(a+ib)|=a Im[(a+ib)] =b 1.1]
=r cosd =rsing '

Where Re and Im mean "take the real part" and "take the imaginary part”,
respectively.

In this representation the square amplitude is

(a+ib)|" =a2 +b?

=r?(cos’ 6 +sin? @) =r?
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where the identity c66 + sirf@ = 1 has been used.

1.1.2 Exponentials and complex exponentials

The exponential function; er exp§), is defined as the power series

exp(x) =1+E x> + 3+ 2 x*+...

The number e is the base of natural logarithms, so that In(e) = 1.
Exponentials have the following properties

op(0) =1  exp(A) xexp(B) =exp(A+B)  [exp(A)] = exp(2A)
exp(A) x exp(— A) = exd A- A) = exj0) = 1
1 exp( A)

exd=A) = A oxd(B)

=exfd A) x exf- B)

The complex exponential is also defined in terms of a power series:
exp(if) =1+2(i6)> +1(i6)° +1(i6)" +...

By comparing this series expansion with those for sin@and cos@it can easily
be shown that

expli6) = cosf+ising [1.2]

Thisis avery important relation which will be used frequently. For negative
exponents thereis a similar result

exp(—i6) = cod-6) +isin(-6)

.. [1.3]
=cosfd-isnd

where the identities cod — 8) = cos@ and sin(- 8) = —sin8 have been used.

By comparison of Egns. [1.1] and [1.2] it can be seen that the complex
number (a + ib) can be written

(a+ib) =rexp(i6)

wherer = a® + b? and tand= (b/a).
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In the complex exponential form, the complex conjugate is found by
changing the sign of the termiin

if C=rexp(i6)
then C* =rexp(-i6)

It follows that

Ic|* =cc*
=rexpl(iO)r exp(-ib)
=r?exp(i@-i6) =r? exp(0)

:r2

Multiplication and division of complex numbers in tlfjgd) format is
straightforward

let C=rexp(if) and D:sexp(i(p) then

%:T;(ie):?le)(p(_ie) ch:rsexp(i(6’+(p))
%:;::—EE:Z; :Lsexp(ié’) exp(-ig) :LSeXp(i(e‘@)

1.1.2.1 Relation to trigonometric functions

Starting from the relation
exp(if) = cosf+isind
it follows that, as cos@ = co¥¥ and sin(-6) = — sirg,
exp(—i6) = cosf-isiné
From these two relationships the following can easily be shown

expl(i6) + exp(—i6) = 2cos or cosf = %[exp(i@) +exp(—i6')]
expli6) - exp(-i6) = 2isin@ or sind=[expli6) - exp(-i6)]




1.1.3 Circular motion

In NMR basic form of motion is for magnetization to precess about a magnetic
field. Viewed looking down the magnetic field, the tip of the magnetization
vector describes a circular path. It turns out that complex exponentials are a
very convenient and natural way of describing such motion.

Consider a poinp moving in thexy-plane in a circular path, radiuscentred p
at the origin. The position of the particle can be expressed in terms of the %
distancea and an anglé Thex—component is /¢osf and they-component is / 7 X
[Bin8. The analogy with complex numbers is very compelling (see section
1.1.1); if thex- andy-axes are treated as the real and imaginary parts, then the
position can be specified as the complex numbdexp( 6).

In this complex notation the angl@ is called thephase. Points With A it p moving on a circular
different anglesd are said to have different phases and the difference betw@gr the xy-plane.
the two angles is called thghase difference or phase shift between the two
points.
If the point is moving around the circular path with a constant speed then the
phase becomes a function of time. In fact for a constant spasdsimply
proportional to time, and the constant of proportion is the angular speed (or

frequency)w

0= wt

where @ is in radianst is in seconds andis in radians 8. Sometimes it is
convenient to work in Hz (that is, revolutions per second) rather than radS™;
the frequency in Hz, v, isrelated to w by w=2 .

The position of the point can now be expressed as r exp(i at), an expression
which occurs very frequently in the mathematical description of NMR.
Recalling that exp(i6) can be thought of as a phase, it is seen that there is a
strong connection between phase and frequency. For example, a phase shift of
6= at will come about due to precession at frequency wfor timet.

Rotation of the point p in the opposite sense is simply represented by y D
changing the sign of w r exp(+at). Suppose that there are two particfeand S\
p', one rotating at e@and the other atet assuming that they both start on ¥e %
axis, their motion can be described by expfr and exp(+at) respectively.
Thus, thex- andy-components are:
A/p’
| X-comp. Yy-comp. The x-components of two
p| s sina st
) resultant simply oscillates along

p cosat —-sinat the x-axis.

It is clear that the-components add, and tigecomponents cancel. All that is
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left is a component along theaxis which is oscillating back and forth at
frequencyw In the complex notation this result is easy to see as by Eqgns. [1.2]
and [1.3], expt) + exp(- iwt) = 2cogwt. In words, a point oscillating along

a line can be represented as two counter-rotating points.




1.2 Wavefunctions and operators

In quantum mechanics, two mathematical objects — wavefunctions and
operators — are of central importance. The wavefunction describes the system
of interest (such as a spin or an electron) completely; if the wavefunction is
known it is possible to calculate all the properties of the system. The simplest
example of this that is frequently encountered is when considering the
wavefunctions which describe electrons in atoms (atomic orbitals) or molecules
(molecular orbitals). One often used interpretation of such electronic
wavefunctions is to say that the square of the wavefunction gives the probability
of finding the electron at that point.

Wavefunctions are simply mathematical functions of position, &ime For
example, the 1s electron in a hydrogen atom is described by the function exp(—
ar), wherer is the distance from the nucleus and a constant.

In quantum mechanics, operators represent "observable quantities" such as
position, momentum and energy; each observable has an operator associated
with it.

Operators "operate on" functions to give new functions, hence their name

operatorx function = (new function)

An example of an operator (sl/dx); in words this operator says "differentiate
with respect to". Its effect on the function skis

i(si nx) = cosx
dx

the "new function" is cox. Operators can also be simple functions, so for
example the operatef just means "multiply by®".

It is clear from this discussion that operators and functtansot be re-
ordered in the same way that numbers or functions can be. For example

2x3isthesameas 3% 2
x x sin(x) isthe same as sin(x) x x

d N . d
but %Qx sin(x) is not the same as sin(x) x %Q

Generally operators are thought of as acting on the functions that appear to their
right.




1.2.1 Eigenfunctionsand eigenvalues

Generally, operators act on functions to give another function:

operatorx function = (new function)

However, for a given operator there are some functions which, when acted
upon, are regenerated, but multiplied by a constant

operatorx function = constant (function) [1.4]

Such functions are said to lesgenfunctions of the operator and the constants
are said to be the associategenval ues.

If the operator isQ (the hat is to distinguish it as an operator) then Eqn.
[1.4] can be written more formally as

Qf, =df, [1.5]

wheref_ is an eigenfunction of) with eigenvaluey; there may be more that

one eigenfunction each with different eigenvalues. Equation [1.5] is known as
the eigenvalue equation.

For example, is expk), wherea is a constant, an eigenfunction of the
operator(d/dx)? To find out the operator and function are substituted into the
left-hand side of the eigenvalue equation, Eqn. [1.5]

&%@exp(ax) = aexp(ax)

It is seen that the result of operating on the function is to generate the original
function times a constant. Therefore ex)(s an eigenfunction of the operator

(d/ dx) with eigenvalue.

Is sin@x), wherea is a constant, an eigenfunction of the operzétljdx)?

As before, the operator and function are substituted into the left-hand side of the
eigenvalue equation.

%@s n(ax) = acoq ax)

# constant x sin(ax)




As the original function is not regenerated, &) {s not an eigenfunction of the
operator(d/ dx) .

1.2.2 Normalization and orthogonality

A function, ¢, is said to beormalised if

[l*)wdr=1

where, as usual, the * represents the complex conjugate. The notai®n d
taken in quantum mechanics to mean integration over the full range of all
relevant variableg.g. in three-dimensional space this would mean the range —
o t0 +oo for all of x, y andz

Two functionsy andgare said to berthogonal if

I(l//*) @dr =0

It can be shown that the eigenfunctions of an operator are orthogonal to one
another, provided that they have different eigenvalues.

if Qf, =qf, and Qf, =q'f,
then [(f,*)fy d7=0

1.2.3 Bra-ket notation

This short-hand notation for wavefunctions is often used in quantum mechanics.
A wavefunction is represented by a "kdt".); labels used to distinguish
different wavefunctions are written in the ket. For example

f, iswritten ‘q> or sometimes‘ fq>

It is a bit superfluous to writg inside the ket.

The complex conjugate of a wavefunction is written as a "Qral"; for
example

(fq,)* iswritten <q‘
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The rule is that if a bra appears on kféand a ket on theight, integration
over dris implied. So

(9] a) impIiesJ’(fq, *) f,dr

sometimes the middle vertical lines are merg{qd\:q>.

Although it takes a little time to get used to, the bra-ket notation is very
compact. For example, the normalization and orthogonality conditions can be
written

{ala)=1 (a'|a)=0
A frequently encountered integral in quantum mechanics is
[w Qudr

where ¢4 and ¢ are wavefunctions, distinguished by the subscriptsdj. In
bra-ket notation this integral becomes

(19 ) [1.6]

as before, the presence of a bra on the left and a ket on the right implies
integration over d Note that in general, it is not allowed to re-order the
operator and the wavefunctions (section 1.2). The integral of Eqn. [1.6] is often

called amatrix element, specifically thdj element, of the operat®).
In the bra-ket notation the eigenvalue equation, Eqn. [1.5], becomes

Qla) =dla)

Again, this is very compact.

1.2.4 Basissets

The position of any point in three-dimensional space can be specified by giving
its x-, y- and zcomponents. These three components form a complete
description of the position of the point; two components would be insufficient
and adding a fourth component along another axis would be superfluous. The
three axes are orthogonal to one another; that is any one axis does not have a
component along the other two.
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In quantum mechanics there is a similar idea of expressing a wavefunction in
terms of a set of other functions. For exampglenay be expressed as a linear
combination of other functions

@) =aln+a,l2) +al3+.

where thei[Jare called théasis functions and theg; are coefficients (numbers).

Often there is a limited set of basis functions needed to describe any
particular wavefunction; such a set is referred to araplete basis set.
Usually the members of this set are orthogonal and can be chosen to be
normalized;j.e.

1.2.5 Expectation values

A postulate of quantum mechanics is that if a system is described by a
wavefunctiony then the value of an observable quantity represented by the

operatorQ is given by the expectation valt(ef)>, defined as

<Q>:[w*©wdr

[w*wdr

or in the bra-ket notation

A

o (wlQu)
<Q%_<ww0
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1.3 Spin operators

1.3.1 Spin angular momentum

A mass going round a circular path (an orbit) possemsgpgar momentum; it
turns out that this is a vector quantity which points in a direction perpendicular
to the plane of the rotation. Tixe y- andz-components of this vector can be
o specified, and these are the angular momenta in-the andz-directions. In
. . guantum mechanics, there are operators which represent these three components
A mass going round a circular

path possesses angular of the angular momentum.

t, ted b . . .
vector | which pointe Nuclear spins also have angular momentum associated with them — called

P;;r;ﬁ)nndicular to the plane of  gpin angular momentum. The three components of this spin angular momentum
' (alongx, y andz) are represented by the operatbys I, and I, (from now on
the hats will be dropped unless there is any possibility of ambiguity).

These operators are extremely important in the quantum mechanical
description of NMR, indeed just about all of the theory in these lectures uses
these operators. It is therefore very important to understand their properties.

1.3.2 Eigenvaluesand eigenfunctions

From now on the discussion is restricted to nuclei with nuclear spin quantum
number, I, = 3. For such a spin, it turns out that there are just
(21 + 1) = 2 eigenfunctions of any one of the operatgrsl, and1,. As itis
traditional to define the direction of the applied magnetic fieldzashe
eigenfunctions of thd, operator are the ones of most interest. These two
eigenfunctions are usually denotedidnd 5] they have the properties

l,la) =3nla)

p)=-11p)

I z
where#: is Planck’'s constant divided byz2 These properties mean thafland

|f0are indeed eigenfunctions, with eigenvalugls and — %7 respectively.
These functions are normalized and orthogonal to one another

(ala)=1(p|p)=1(a|p)=0
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The interpretation of these two states rests on the idea of angular momentu

as a vector quantity. It turns out that angular momentum of ¢herel = )  +1 B
can be represented by a vector of Ien@{ﬁ(l +1) ; for spin % the length of -4

the vector is(+/3/2)h. This vector can orient itself with respect to a fixed axis, ) )
(04

say thez-axis, in only (2 + 1) ways such that th@ojection of the vectol onto
the z-axis is I4,(I —=1)#,...—1%, i.e. integer steps betwedrand —I. In the case Vector representation of the

1 . . . 1 1 spin angular momentum of a
of | = 3, there are only two possible projections;% and —37%. These spin half and its projections

. . . . onto the zaxis.
projections are labelled with a quantum numiner called the magnetic
quantum number. It has values, and -1 .

An alternative way of denoting the two eigenfunctions of the opelraioto
label them with then values

Izm,>:m|h‘m,>

e =4 D=4y

1
N}

So |%> and|—%> correspond tag[Jand COwhich can be thought of as "spin up”
and "spin down".
The functionsdUand plare not eigenfunctions of eithigror |y.

1.3.3 Raising and lowering operators

The raising operatol,, and the lowering operatdr, are defined as
o= +ily, o=, =il [1.7]

These operators have the following properties

[1.8]

Their names originated from these properties. The raising operator acts on the
state |—%>, which has m = -3, in such away as to increase my by one unit to
give m = +3. However, if |, acts on the state |%> there is no possibility of
further increasing my as it is aready at its maximum value; thus I acting on |%>
gives zero.

The same rationalization can be applied to the lowering operator. It acts on
|4), which has m = + %, and produces a state on which my has been lowered by
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shay wlt)
E=h

A spectroscopic  transition
takes place between two
energy levels, E and E, which
are eigenvalues of the
Hamiltonian; these levels
correspond to eigenfunctions of
the Hamiltonian.

1

one i.em = —5. However, then value can be lowered no furtherlsacting

on |- 1) gives zero.

Using the definitions of Eqgn. [1.7], I and Iy can be expressed in terms of the
raising and lowering operators:

Lo=2(,+12) 1, =40.-1.)

Using these, and the properties given in Egn. [1.8], it is easy to work out the
effect that 1, and 1, have on the states |aCland |BL] for example

Lla)=

By asimilar method it can be found that

Lla)y=31B) 1)B)=3na) 1 |a)=4in|g) 1,|B)=-%inla) [19]

These relationships all show that |aCand |f0are not eigenfunctions of I and Iy.

1.4 Hamiltonians

The Hamiltonian, H, is the specia name given to the operator for the energy of
the system. This operator is exceptionally important as its eigenvalues and
eigenfunctions are the "energy levels' of the system, and it is transitions
between these energy levels which are detected in spectroscopy. To understand
the spectrum, therefore, it is necessary to have a knowledge of the energy levels
and thisin turn requires a knowledge of the Hamiltonian operator.

In NMR, the Hamiltonian is seen as having a more subtle effect than simply
determining the energy levels. This comes about because the Hamiltonian also
affects how the spin system evolves in time. By altering the Hamiltonian the
time evolution of the spins can be manipulated and it is precisely thisthat lies at
the heart of multiple-pulse NMR.

The precise mathematical form of the Hamiltonian is found by first writing
down an expression for the energy of the system using classical mechanics and
then "trandating” this into quantum mechanica form according to a set of rules.
In this lecture the form of the relevant Hamiltonians will simply be stated rather
than derived.

In NMR the Hamiltonian changes depending on the experimental situation.
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There is one Hamiltonian for the spin or spins in the presence of the applied
magnetic field, but this Hamiltonian changes when a radio-frequency pulse is
applied.

1.4.1 Freeprecession
Free precession is when the spins experience just the applied magnetigfield,
traditionally taken to be along tzeaxis.

1.4.1.1 Onespin

The free precession Hamiltonidflee, IS

Hfree = VBo/;

where y is the gyromagnetic ratio, a constant characteristic of a particular
nuclear species such as proton or carbon-13. The qugBgityhas the units of
energy, which is expected as the Hamiltonian is the operator for energy.
However, it turns out that it is much more convenient to write the Hamiltonian
in units of angular frequency (radiang)swhich is achieved by dividing the
expression for Hyee by Zto give

Htree = )Bol;

To be consistent it is necessary then to divide all of the operators by 7. As a
result all of the factors of / disappear from many of the equations given above
e.g. they become:

l,la) =% a) 1,|8) =-%|8) [1.10]
L|B)=la)  1la)=1p) [1.11]
Llay=38) 1B =%a) 1 |a)=%iB) 1,|8)=-3%ila) [112]

From now on, the properties of the wavefunctions and operators will be used in
this form. The quantity yBo, which has dimensions of angular frequency (rad s
1), is often called the Larmor frequency, a.

Eigenfunctions and eigenvalues

The eigenfunctions and eigenvalues of Hsee are a set of functions, |il) which
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satisfy the eigenvalue equation:

Hfree|i>:£i|i>
w0|z|i>:£i|i>

It is already known thatr[Jand Jf0are eigenfunctions df, so it follows that
they are also eigenfunctions of any operator proportional to

Hfree|a> = CU0| z|a>
=z w)a)
and likewiseH, .| 8) = wl,|B) = -t w)|B).

So, pJand POare eigenfunctions dfise With eigenvalues; «, and -3 w,,
respectively. These two eigenfunctions correspond to two energy levels and a

transition between them occurs at freque&h;a0 - (—%a)o)) = w,.

1.4.1.2 Several spins

If there is more then one spin, each simply contributes a term; i
subscripts are used to indicate that the operator applies to a particular spin

Hiee = Wyl T, 15, +...

free

wherely; is the operator for the first spity, is that for the second and so on.
Due to the effects of chemical shift, the Larmor frequencies of the spins may be

different and so they have been writterzgs
Eigenfunctions and eigenvalues

As Hriee Separates into aum of terms, the eigenfunctions turn out to be a
product of the eigenfunctions of the separate terms; as the eigenfunctions of
w111, are already known, it is easy to find those for the whole Hamiltonian.

As an example, consider the Hamiltonian for two spins

Hfree = w(),lllz +w0,2|22

From section 1.4.1.1, it is known that, for spin 1
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B)=-%w,|B)

-1
a)O,lllz al> = zwo‘al> and a)O,lllz

likewise for spin 2

B)=-1w,lB)

Wyl 5, a2>:%wo,2‘a2> and Wyl 5,

Consider the functionB](a-[] which is a product of one of the eigenfunctions
for spin 1 with one for spin 2. To show that this is an eigenfunctibh&fthe
Hamiltonian is applied to the function

H

:31>‘ a,) = (%,1'12 + 6‘)o,zlzz) :@>‘ a2>
Bla,)+ .| B)a,)
= =3 ,| B)|ay) + @yl B) )
= ‘%wo,l‘ﬁl>‘az>+%w0,2‘:31>‘0'2>
= (~3eps + @) ) )

free

=Wy, ly,

As the action oHsee 0N [Bilolis to regenerate the function, then it has been
shown that the function is indeed an eigenfunction, with eigenvalue

(‘%%,H%wo,z)- Some comment in needed on these manipulation needed

between lines 2 and 3 of the above calculation. The order of the fungtion |
and the operator,, were changed between lines 2 and 3. Generally, as was
noted above, it is not permitted to reorder operators and functions; however it is
permitted in this case as the operator refersito 2 but the function refers to

spin 1. The operator has no effect, therefore, on the function and so the two can
be re-ordered.

There are four possible products of the single-spin eigenfunctions and each
of these can be shown to be an eigenfunction. The table summarises the results;
in it, the shorthand notation has been used in wigichr}Uis denotedgatli.e.
it is implied by the order of the labels as to which spin they apply to

Eigenfunctions and eigenvalues for two spins
eigenfunction m3; m, M eigenvalue

laa) 1+ 1 +iw,+iw,
|a,8> +i -1 0 +ia-ia,
|,80'> -1 +1 0 -iw,tia,
|,3,3> -1 -1 1 Ga i,
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laa)

The four energy levels of a two-
spin system. The allowed
transitions of spin 1 are shown
by dashed arrows, and those of
spin 2 by solid arrows.

Also shown in the table are tim values for the individual spins and the
total magnetic quantum numb®4, which is simply the sum of thg values of
the two spins.

In normal NMR, the allowed transitions are between those levels that differ
in M values by one unit. There are two transitions which come outyaf
|Bal |aaldand ff0- |BAC) and there are two which come out @j»,
|Bal |BB0and ff0- |aall The former two transitions involve a flip in the
spin state of spin 1, whereas the latter pair involve a flip of the state of spin 2.
The energy levels and transitions are depicted opposite.

1.4.1.3 Scalar coupling

The Hamiltonian for scalar coupling contains a ter;R;lj, for each coupled

pair of spins;J; is the coupling constant, in Hz, between spins i and j. The
terms representing coupling have to be added to those terms described in
section 1.4.1.2 which represent the basic Larmor precession. So, the complete
free precession Hamiltonian for two spins is:

Hiee = @y, + ol ,, +270,15,1,,

Eigenfunctions and eigenvalues for two spins

The product functions, such g&[ja»] turn out to also be eigenfunctions of the
coupling Hamiltonian. For example, consider the funcifaifd.] to show that
this is an eigenfunction of the coupling parttife, the relevant operator is
applied to the function

271]12'12I 2z

ﬂ1>‘az> = 2,1, ﬁ1>|22 a2>
=2m,1,|8)%|a,)
:27ﬂ12(—%)‘,81>%‘02>
=-370,|5)a,)

As the action of 2Zdi,li,l5, on Billasldis to regenerate the function, then it
follows that the function is indeed an eigenfunction, with eigenvéﬂiée]z]lz).

As before, the order of operators can be altered when the relevant operator and
function refer to different spins.

In a similar way, all four product functions can be show to be eigenfunctions
of the coupling Hamiltonian, and therefore of the complete free precession
Hamiltonian. The table shows the complete set of energy levels.
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Eigenfunctions and eigenvalues for two coupled

spins
number  eigenfunction M eigenvalue
1 laa) 1 +iw,+tiw,+370,
2 |O’ﬁ> 0 +%w0,1_%%,2_%7ﬂ12
3 |ﬁ0’> 0 _%%,1"'%(’-)0,2_%71]12
4 |ﬁﬂ> 1 _%wo,l_%%,z"'%mlz

There are two allowed transitions in which spin 1 flips, 1-3 and 2—4, and these
appear atayy + 712 and wy; - 7012, respectively. There are two further
transitions in which spin 2 flips, 1-2 and 3—-4, and these appeay, at 73;,

and w, - 7012, respectively. These four lines form the familiar two doublets
found in the spectrum of two coupled spins.

Transition 1-2 is one in which spin 2 flipg. changes spin state, but the
spin state of spin 1 remains the same. In this transition spin 2 can be said to be
active, whereas spin 1 is said to passive. These details are summarized in the
diagram below

1.3 2.4 1H227TJ3H4
2]
| 12‘ | 12
0,1 @o,2
spinl  flips a p
spin2 « B flips

The spectrum from two coupled spins, showing which spins are passive and active in each transition. The
frequency scale is in rad s™, so the splitting of the doublet is 2 /i, rad s™, which corresponds to Ji» Hz.

Eigenfunctions and eigenvalues for several spins

For N spins, it is easy to show that the eigenfunctions are the 2" possible
products of the single spin egenfunctions |ald and |f0 A particular
eigenfunction can be labelled with the my values for each spin, m;; and written

as|m,m,...m ,i> . The energy of thiseigenfunction is

N N

;myi“’oyi * Z%m,im,j(Zm”)

1=1 J>I

The restricted sum over the index j isto avoid counting the couplings more than
once.
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At object rotating at frequency
w in the xy-plane when viewed
in the lab. frame (fixed axes)
appears to rotate at frequency
(w — arr) when observed in a
frame rotating about the z-axis
at akr.

2

|

|

J |
Q)] ORF

lllustration of the relationship
between the Larmor frequency,
wy, the transmitter frequency,
akr, and the offset, Q.

1.4.2 Pulses

In NMR the nuclear spin magnetization is manipulated by applying a magnetic
field which is (a) transverse to the static magnetic figldin thexy-plane, and
(b) oscillating at close to the Larmor frequency of the spins. Such a field is
created by passing the output of a radio-frequency transmitter through a small
coil which is located close to the sample.

If the field is applied along the-direction and is oscillating adukr, the
Hamiltonian for one spin is

H=w)l, + 2w, coswyt |,

The first term represents the interaction of the spin with the static magnetic
field, and the second represents the interaction with the oscillating field. The
strength of the latter is given loy.

It is difficult to work with this Hamiltonian as it depends on time. However,
this time dependence can be removed by changingdtatang set of axes, or a
rotating frame. These axes rotate about thaxis at frequencywxkr, and in the
same sense as the Larmor precession.

In such a set of axes the Larmor precession is no longes, abut at
(ar—arp); this quantity is called theffset, Q. The more important result of
using the rotating frame is that the time dependence of the transverse field is
removed. The details of how this comes about are beyond the scope of this
lecture, but can be found in a number of standard texts on NMR.

In the rotating frame, the Hamiltonian becomes time independent

H :(a)o_a)RF)lz-'-a)llx
:Q|z+a)1|x

Commonly, the strength of the radiofrequency field is arranged to be much
greater than typical offsetsy >>|Q|. It is then permissible to ignore the offset
term and so write the pulse Hamiltonian as (for pulses of either phase)

Hpulse,x = 6Ull X or Hpulse,y = 6Ull y

Such pulses are describednasd or non-selective, in the sense that they affect
spins over a range of offsets. Pulses with lower field strengihsyre termed
selective or soft.

1.4.2.1 Several spins

For multi-spin systems, a term of the foumx is added for each spin that is
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affected by the pulse. Note that in heteronuclear systems, pulses can be applied
independently to nuclei of different kinds

H =l tawl, +...

pulse,x

The product functions given above are not eigenfunctions of these Hamiltonians
for pulses.

From now it, it will be assumed that all calculations are made in the rotating
frame. So, instead of the free precession Hamiltonian being in terms of Larmor
frequencies it will be written in terms of offsets. For example, the complete
free precession Hamiltonian for two coupled spins is

H :Qlllz+Q2|22+27ﬂ12|lz|22

free

1.5 Time evolution

In general, the wavefunction describing a system varies with time, and this
variation can be computed using the time-dependent Schrodinger equation

dy(t) _
“a —iHw(t) [1.13]

where ¢(t) indicates that the wavefunction is a function of time. From this
equation it is seen that the way in which the wavefunction varies with time
depends on the Hamiltonian. In NMR, the Hamiltonian can be manipulated —
for example by applying radio-frequency fields — and it is thus possible to
manipulate the evolution of the spin system.

As has been seen in section 1.2.5, the size of observable quantities, such as
magnetization, can be found by calculating the expectation value of the
appropriate operator. For example, #amagnetization is proportional to the
expectation value of the operatgr

wherek is a constant of proportion. As the wavefunction changes with time, so
do the expectation values and hence the observable magnetization.

1.6 Superposition states

This section will consider first a single spin and then a collection of a large
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L|a0= (1/2) |aO

k|B0= —(112) | A0
0= [Blal=0
at= (BA0= 1

number of non-interacting spins, called arsemble. For example, the single
spin might be an isolated proton in a single molecule, while the ensemble would
be a normal NMR sample made up of a large number of such molecules. In an
NMR experiment, the observable magnetization comes from the whole sample;
often it is called thdoulk magnetization to emphasize this point. Each spin in
the sample makes a small contribution to the bulk magnetization. The
processes of going from a system of one spin to one of many is eadéable
averaging.

The wavefunction for one spin can be written

@) =c, (V) @) +c,(t)| B)

where cq(t) and cg(t) are coefficients which depend on time and which in
general are complex numbers. Such a wavefunction is cakapegposition
state, the name deriving from the fact that it is a sum of contributions from
different wavefunctions.

In elementary quantum mechanics it is all too easy to fall into the erroneous

view that "the spin must be either up or down, that is in statestateS". This
simply is not true; quantum mechanics makes no such claim.

1.6.1 Observables

Thex-, y- andz-magnetizations are proportional to the expectation values of the
operatordy, Iy andl,. For brevity,cqy(t) will be writtenc,, the time dependence
being implied.

Consider first the expectation valuelp{section 1.2.5)

(¢, (al+ (a1, (c.la) + ¢, B)

(catarl+c(B)(c, o)+, 8)

) +cciall,|B)+ce, (Bl
c,C.lala) +cye <,3‘ >+Cacﬂ<a‘ﬂ>+cﬂcﬂ<'8‘ﬂ>

scic,{ala) + 3, (Bla) + (= 3)cic,{al B) + cpes(- 3)(8| B)

C,C, x1+cyc, x0+c,cy x0+Che, x1

(1) =

_c;c (all,|la) +c4e <

)

1cic, x1+3c,c, x0+(-2)cic, x0+cyc (- 3) x1

C,C, +C4Cs
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Extensive use has been made of the facts that the two wavefungfiiansl |[5(]
are normalized and orthogonal to one another (section 1.3.2), and that the effect
of I, on these wavefunctions is know (Eqn. [1.10]).

To simplify matters, it will be assumed that the wavefunctigf) is
normalized so thafy [¢C= 1; this implies that,c, +c,c; =1.

Using this approach, it is also possible to determine the expectation values of
Ix andly. In summary:

[1.14]

It is interesting to note that if the spin were to be purely in statsych that,

= 1,c3 = 0, there would be ng- and noy-magnetization. The fact that such
magnetization is observed in an NMR experiment implies that the spins must be
in superposition states.

The coefficientssy andcg are in general complex, and it is sometimes useful
to rewrite them in thér/¢ format (see section 1.1.2)

c, =TI, exp(igq,) Cs =T, exp(iqaﬁ)
c, =T, exp(—iqaa) Cy =1, exp(—igop)

Using these, the expectation valuesl{gr, become:

(=32 -r) (L) =rrc0da -g)
<Iy> = rarﬂsin(gq, —gaﬂ)

The normalization conditiorg,c, +c,c, =1, becomesj\ra2 + rj) =1 in this
format. Recall that thes are always positive and real.

1.6.1.1 Comment on these observables

The expectation value df, can take any value between (whenrq =1,

rg = 0) and-3 (whenrq = 0,rg = 1). This is in contrast to the quantum number
my which is restricted to values 3 ("spin up or spin down"). Likewise, the
expectation values of, and I, can take any values between; and +;,
depending on the exact values of the coefficients.
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1.6.1.2 Ensemble averages; bulk magnetization

In order to compute, say, themagnetization from the whole sample, it is
necessary to add up the individual contributions from each spin:

Where<l X> is the ensemble average, that is the sum over the whole sample.
The contribution from théh spin,[] can be calculate using Eqn. [1.14].

(=0, + (1, (L)%
:%(cﬁc +Cﬁ ) %(cﬂc +cﬂ ) %(cﬁc +CﬁC)+..

-1

=T, cos((/g, - (/;3)

On the third line the over-bar is short hand for the average written out explicitly
in the previous line. The fourth line is the same as the third, but expressed in
the(r,¢@ format (Eqn. [1.15]).

The contribution from each spin depends on the valueggaind ¢ g which
in general it would be quite impossible to know for each of the enormous
number of spins in the sample. However, when the spins are in equilibrium it is
reasonable to assume that the phaggf the individual spins are distributed
randomly. As [[=rqrgcos@ - ¢) for each spin, the random phases result in
the cosine term being randomly distributed in the range —1 to +1, and as a result
the sum of all these terms is zero. That is, at equilibrium

This is in accord with the observation that at equilibrium there is no transverse
magnetization.

The situation for the-magnetization is somewhat different:
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(1) =00+ (1), + (1)
(r;,l - rﬂ2,1)+%(raz,2 - rﬂz,z)"'%(raz,s - rﬂz,s)

2 2 2 _af,2 2 2
(ra,l I, tr 5t ) > (rm trg, trp5t.. )

(=17

Note that the phasegdo not enter into this expression, and recall that'the
are positive.

This is interpreted in the following way. In the superposition state
Cq a0+ c3 |80 c,c, =r2 can be interpreted as tipeobability of finding the

Nk N

(NI

spin in statedl] and cﬁc; = rj as likewise the probability of finding the spin in

state 0 The idea is that if the state of any one spin is determined by
experiment the outcome is always eitlegrdr |30 However, if a large number
of spins are taken, initially all in identical superposition states, and the spin

states of these determined, a fractige, would be found to be in statel]
and a fractiorc,c, in state fJ

From this it follows that

whereP, andPg are the total probabilities of finding the spins in statéof |GL]
respectively. These total probabilities can be identified with the populations of
two levels §Jor |BL] Thez-magnetization is thus proportional to the population
difference between the two levels, as expected. At equilibrium, this population
difference is predicted by the Boltzmann distribution.

1.6.2 Timedependence

The time dependence of the system is found by solving the time dependent
Schrddinger equation, Eqn. [1.13]. From its form, it is clear that the exact
nature of the time dependence will depend on the Hamiltareant will be
different for periods of free precession and radiofrequency pulses.

1.6.2.1 Freeprecession

The Hamiltonian (in a fixed set of axes, not a rotating framejlisand at time
= 0 the wavefunction will be assumed to be
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L|a0= (1/2) |aO

k|B0= —(112) | A0
0= [Blal=0
at= (BA0= 1

|(0)) = ¢, (0)a) +c,(0)| B)
=1, (0) eplig, (0)] ) +1,(0) expligg (0)] 8)

The time dependent Schrddinger equation can therefore be written as

dy(t) _
—dt =-iHy

dlc, ®la)+c, 1) 5]
dt

=-iwyl,|c, () a)+ Cﬂ(t)|'3>]
- -iwke, () a) - 2c, (0] )

where use has been made of the propertied,ofivhen acting on the
wavefunctionsdiJand P(section 1.4 Egn. [1.10]). Both side of this equation
are left-multiplied by &, and the use is made of the orthogonalityrdénd O

d(alc, (V]a) +{alc, )| A)]
at

= - w0[<a|%ca t)a) - <a|%0/3(t)|:3>]
de, (t) _ 1
& - sl c, (1)

The corresponding equation fgyis found by left multiplying byA|.

dc,(t)
B .
These are both standard differential equations whose solutions are well know:

c,(t) =c,(0) exp(—%iwo t) cs(t) = c4(0) exp(%icu0 t)

All that happens is that the coefficients oscillate in phase, at the Larmor
frequency.

To find the time dependence of the expectation valuedyof these
expressions fot, g(t) are simply substituted into Eqn. [1.14]
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(1)) = 4(c; (e, (1) - c;(t)c, (1)
c, (0)c,(0) exp(%i w, t) exp(— 3w, t)
~ 3¢,(0)c,(0) exp(—%iwot)exp(%i%t)
¢, (0)c, (0) -z c5(0)c,(0)

a a

As expected, the-component does not vary with time, but remains fixed at its
initial value. However, thex- and y-components vary according to the
following which can be found in the same way

(1,)(0) =41, (0)r,(0) co eyt - ,(0) + ,(0))
(1,)(t) = 31, (0)r,(0) sin{eat - 9,(0) + ,(0))

Again, as expected, these components oscillate at the Larmor frequency.

1.6.2.2 Pulses

More interesting is the effect of radiofrequency pulses, for which the
Hamiltonian (in the rotating frame) @lx. Solving the Schrédinger equation is
a little more difficult than for the case above, and yields the result

c,(0) cos3 wit —ic,(0) sinz wt

(@]
Q
—
~+
~
]

c;(0) cos; wit —ic,(0)sinz it

(g
=)
—
—
~
]

In contrast to free precession, the pulse actually causes that coefficients to
change, rather than simply to oscillate in phase. The effect is thus much more
significant.

A lengthy, but straightforward, calculation gives the following resulflfar

(1,)(0) = (c, (0)c;(0) - c; (0)c,(0)) coscat

[1.16]
~3(c,(0)c; (0) - ¢, (0)c,(0) sineat

The first term in brackets on the right is simflyJat time zero (compare Eqn.
[1.14]). The second term i$,0at time zero (compare Eqn. [1.14]). SBI{t)
can be written

<I y>(t) = <I y>(O)cosa)1t—<l ,)(0)sinat
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N

Each spin makes a contribution
to the magnetization in each
direction (top diagram). A
pulse, here 90° about the x-

axis, rotates all of these
contributions in the same sense
through the same angle

(bottom diagram).

This result is hardly surprising. It simply says that if a pulse is applied about
the x-axis, a component which was initially alongl,[{0) is rotated towards.
The rotation fronztoy is complete whemt = 772, i.e. a 90° pulse.

The result of Eqn. [1.16] applies to just one spin. To make it apply to the
whole sample, the ensemble average must be taken

(1,)®) = (1, )(0) cosewyt - (1, )(0) sinet [1.17]

Suppose that time zero corresponds to equilibrium. As discussed above, at
equilibrium then ensemble average of theomponents is zero, but tie
components are not, so

<Iy>(t):—<lz>eqsinwlt

wherell,[4, is the equilibrium ensemble average of #ttemponents. In words,
Egn. [1.17] says that the pulse rotates the equilibrium magnetizatiorz tom
y, just as expected.

1.6.3 Coherences

Transverse magnetization is associated in quantum mechanics with what is
known as acoherence. It was seen above that at equilibrium there is no
transverse magnetization, not because each spin does not make a contribution,
but because these contributions are random and so add up to zero. However, at
equilibrium the z-components do not cancel one another, leading to a net
magnetization along tredirection.

During the pulse, the-component from each spin is rotated towayds
according to Eqn. [1.17]. The key point is that all the contributions from all the
spins, although they start in random positions in ya@lane, are rotated
through thesame angle. As a result, what started out as a net alignment in the
z-direction rotates in they-plane, becoming a net alignment alongafter a
90° pulse.

Another interpretation is to look at the way in which the individual
coefficients vary during the pulse

O
Q
—
—t
~
I

c,(0) cos3 wt —ic,(0)sing wt

O
=
—
—t
~
I

c;(0) cos; wit —ic,(0)sinz wt

In words, what happens is that the size of the coefficients at tneerelated to
those at time zero in a way which is tbamme for all spins in the sample.
Although the phases are random at time zero, for each spin the phase associated
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with ¢, at time zero is transferred ¢g, andvice versa. It is this correlation of
phases between the two coefficients which leads to an overall observable signal
from the sample.

1.7 Density matrix

The approach used in the previous section is rather inconvenient for calculating
the outcome of NMR experiments. In particular, the need for ensemble
averaging after the calculation has been completed is especially difficult. It
turns out that there is an alternative way of casting the Schrddinger equation
which leads to a much more convenient framework for calculation — this is
density matrix theory. This theory, can be further modified to give an operator
version which is generally the most convenient for calculations in multiple
pulse NMR.

First, the idea ofmatrix representations of operators needs to be introduced.

1.7.1 Matrix representations

An operator,Q, can be represented as a matrix in a particodars set of
functions. A basis set is a complete set of wavefunctions which are adequate
for describing the system, for example in the case of a single spin the two

functions flJand pform a suitable basis. In larger spin systems, more basis
functions are needed, for example the four product functions described in
section 1.4.1.2 form such a basis for a two spin system.

The matrix form ofQ is defined in this two-dimensional representation is
defined as

alQa) (alQdB)E
o7 %MQW (BolB)F

Each of the matrix element§);, is calculated from an integral of the form
Q| L) where iJand jjUare two of the basis functions. The matrix elenf@nt
appears in thigh row and thgth column.

1.7.1.1 Onespin

Particularly important are the matrix representations of the angular momentum
operators. For examplg;

L|a0= (1/2) |aO

k|B0= —(112) | A0
0= [Blal=0
at= (BA0= 1
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| zéallzlw all,|B)d
2 Hpll, a) <,8IZ[>’>%
_Hal3la) (al-3(B)=
Blila) (8-1BF

00

= 1|]

0O -30

As usual, extensive use have been made of the propertiesad the ortho-
normality of the basis functions (see sections 1.3.2).

The representations gf andly are easily found, by expressing them in terms
of the raising and lowering operators (section 1.3.3), to be

| _[D %E I
X_% OD y

1
g
]

1.7.1.2 Direct products

The easiest way to find the matrix representations of angular momentum
operators in larger basis sets is to useltheet product.

When twonxn matrices are multiplied together the result is anotiver
matrix. The rule is that thigth element of the product is found by multiplying,
element by element, thith row by thejth column and adding up all the
products. For example:

(@ bOdp gO [@Ap+br ag+bsg

B: dHH SH:ECp+dr cq+dsH

The direct product, symbolized, of two nxn matrices results in a larger matrix
of size 2Zax2h. The rule for this multiplication is difficult to express formally
but easy enough to describe:

X
[
O

(on

O
[

(7))

D%II:I

[
©
o)

al . qf
4 P*5 s

qQd p g
o 9*H o

[a
T d

|
©

X

I:IQI:II:IQI:I

The right-hand matrix is duplicated four times over, because there are four
elements in the left-hand matrix. Each duplication is multiplied by the

1-30



corresponding element from the left-hand matrix. The final result is

Eap aq
™ bO Op qO @ as
E{: dHDH SH_Ebp cq
Ler

Cs

bp bg [ap ag bp boQ

O 0O O
br bs r as br bsp
dp dgl~ Lk 0
Y OID DD cq dp qu
dr dsO [kr cs dr dsO

(the lines in the central matrix are just to emphasise the relation toxHe 2
matrices, they have no other significance).

The same rule applies to matrices with just a single row (row vectors)

(a,b) 0 (p.q) = (ap.aq,bp,ba)

1.7.1.3 Two spins
The basis set for a single spin can be written[{[5.] the basis set for two

spins can be found from the direct product of two such basis sets, one for each
spin:

(a)la)a(a)la)=(la ) )z ) B)e). £)2))

In this basis the matrix representatior @fcan be found by writing the operator
as the direct product

Iy 0 Ea [1.18]

whereE is the unit matrix

. 0g

= 1

The subscript 2 on thE in Egn. [1.18] is in a sense superfluous as the unit
matrix is the same for all spins. However, it is there to signify that in the direct
product there must be an operator for each spin. Furthermore, these operators
must occur in the correct order, with that for spin 1 leftmost and so on. So, to
find the matrix representation b the required direct product is

Eq1 O I
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In matrix formE; O 1oy is

E, 01 g ODDED %E
1 2)(_& 1H % OD
0 3 0 0O
O
_% 0 0 Og
- 1[]
Eb 0 0 3f
M 0 3 00
andli O Ex is
M 10 O 0g
IlXDEZ:% OED 15
0 0 3 0O
g U
_M0 0 0 30
T [
P 00 OD
M 3 0 0O
As a final exampléy, O 15y is
D 10 D -0
M 0 0 -40
0 i O
_Mm 0 7 0g
- _i O
Eb « 0 0p
& 0 0 00O

All of these matrices are hermetian, which means that matrix elements related
by reflection across the diagonal have the propertyGhatQ;*.

1.7.2 Density matrix

For a one spin system the density mawixs defined according to its elements

t

Jep(t)E
)c;(t)g

oft) = %a(t)czgt t

) ¢,
(1) cylt
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where the over-bars indicate ensemble averaging. This matrix contains all the
information needed to calculate any observable quantity. Forroa#lydefined
in the following way:

1.7.2.1 Observables

It can be shown that the expectation value of an ope@t®,given by

(Q=Troq]

where TrA] means take th&ace, that is the sum of the diagonal elements, of
the matrixA.

For example, the expectation valud a6

1

N
—_

(]

Q

—

~—+

~—"

o

] .
—~ .

~—+ .
N—

|

(g

=

—_

—+

N—

o

®

—_

~—+

~—
~——

—1f,2 _.2
_E(ra _rﬂ)

This is directly comparable to the result obtained in section 1.6.1.2.

The very desirable feature of this definition of the density matrix and the
trace property for calculation observables is that the ensemble averaging is done
before the observable is computed.

The expectation value of is

7
Z ‘
~—
1
_|
=
mi a]
—~
— | “—+
O |10
Q Q
—~| —~
— | T+
O |0
w | =
—~| —~
— | T+
O 1.0
= >y
—~| —~
—+ —+
~—| ~—
O Nl

1-33



Again, this is directly comparable to the result obtained in section 1.6.1.2

The off diagonal elements of the density matrix can contribute to transverse
magnetization, whereas the diagonal elements only contribute to longitudinal

magnetization. In general, a non-zero off-diagonal elemétic; (t) indicates

a coherence involving levelsi andj, whereas a diagonal elememnt(t)c (t),
indicates the population of level

From now on the ensemble averaging and time dependence will be taken as
implicit and so the elements of the density matrix will be written sinmptil

unless there is any ambiguity.

1.7.2.2 Equilibrium

As described in section 1.6.1.2, at equilibrium the phases of the super-position
states are random and as a result the ensemble avera¢s,(t) and

c,(t)c, (t) are zero. This is easily seen by writing then irrtipéormat

*

C,Cs =T, exp(iqaa)rﬁ exp(— iqaﬁ)
=0 at equilibrium

However, the diagonal elements do not average to zero but rather correspond to
the populations?;, of the levels, as was described in section 1.6.1.2

*

c,C, =T exp(iqza)raexp(—i%)

1
N

Il
=
U = ,\,|

The equilibrium density matrix for one spin is thus

O
9@ 7H0 P,

As the energy levels in NMR are so closely spaced, it turns out that to an
excellent approximation the populations can be written in terms of the average
population of the two levelsP,, and the difference between the two
populationsA, whereA =Py - Pg
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N
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Comparing this with the matrix representation$, @ndE, g, can be written

g, =P,E+Al,

It turns out that the part from the matrk does not contribute to any
observables, so for simplicity it is ignored. The fad&datepends on details of

the spin system and just scales the final result, so often it is simply set to 1.
With these simplification®iy is simplyl,.

1.7.2.3 Evolution

The density operator evolves in time according to the following equation, which
can be derived from the time dependent Schrédinger equation (section 1.5):

dz—ft) _ Si[Holt) - o{t)H] [1.19]

Note that asd and o are operators their order is significant. Just as in section
1.5 the evolution depends on the prevailing Hamiltonian.

If H is time independent (something that can usually be arranged by using a
rotating frame, see section 1.4.2), the solution to Eqn. [1.19] is straightforward

o(t) = exp(~-iHt)o{0) exp(iHt)

where again the ordering of the operators must be preserved. All the terms is
this equation can be thought of as either matrices or operators, and it is the
second of these options which is discussed in the next section.

1.7.3 Operator form of the density matrix

So far, Hamiltonians have been written in terms of operators, specifically the
angular momentum operatdss,,, and it has also been seen that these operators
represent observable quantities, such as magnetizations. In addition, it was
shown in section 1.1.2.2 that the equilibrium density matrix has the same form
asl,. These observations naturally lead to the idea that it might be convenient
also to write the density matrix in terms of the angular momentum operators.
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Specifically, the idea is to expand the density matrix as a combination of the
operators:

aft) = a(t)l, + b(b)l, + c(t)l,

wherea, b andc are coefficients which depend on time.

1.7.3.1 Observables

From this form of the density matrix, the expectation value of, for examyple,
can be computed in the usual way (section 1.7.2.1).

(1,)=Tia,]
:Tr[(alx +bl, +cl )l]

= Tr[al | X] +Tr[bl yIX] +Tr[C|z|x]

where to get to the last line the property that the trace of a sum of matrices is
equal to the sum of the traces of the matrices has been used.

It turns out that Tifly] is zero unlesp = q when the trace is %; for

example

N[~

T11,] :Tr@ % i
O OCh

o3 [0
=Tr lED:%
.. 2L
3 0
1.1, =TrilL 8% BpisE
170
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This is a very convenient result. By expressing the density operator in the form
o(t) = a(t)l; + b(t)ly + c(t)l, the x-, y- andz-magnetizations can be deduced just
by inspection as being proportionald(t), b(t), andc(t) respectively (the factor

of one half is not important). This approach is further developed in the lecture 2
where theproduct operator method is introduced.

1.7.3.2 Evolution

The evolution of the density matrix follows the equation

o(t) = exp(~iHt)o{0) exp(iHt)

Often the Hamiltonian will be a sum of terms, for example, in the case of free
precession for two spind = Qil1, + lo,.. The exponential of theum of two
operators can be expressed apreduct of two exponentials provided the
operatorgommute

exp(A+ B) = exp( A) exp(B) provided A and B commute

Commuting operators are ones whose effect is unaltered by changing their
order:i.e. ABy = BAY;, not all operators commute with one another.

Luckily, operators for different spins do commute so, for the free precession
Hamiltonian

exp(-iHt) = exp(-i[Q, 1, + Q,1.]t)
= exp(— iQ,l lZt) exp(— 1Q,1 22t)

The evolution of the density matrix can then be written
o(t) = exp(— iQ,l lZt)exp(— iQZIzzt)a(o)exp(inlht)exp(inlZzt)

The operators for the evolution due to offsets and couplings also commute with
one another.

For commuting operators the order is immaterial. This applies also to their
exponentialse.g. exp(A) B =B exp(A). This property is used in the following

exp(— inllzt)I2X exp(inllzt) = exp(—inllzt)exp(inllzt)l2x
= exp(=iQ, 1t +iQ,1,t)1,,
= eXp(O)IZx = |2x
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In words this says that the offset of spin 1 causes no evolution of transverse
magnetization of spin 2.

These various properties will be used extensively in lecture 2.
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