2 Product Operators

The product operator formalism is a complete and rigorous quantum mechanical
description of NMR experiments; the formalism is a version of density matrix
theory and is well suited to calculating the outcome of modern multiple-pulse
experiments.

One particularly appealing feature is the fact that the operators have a clear
physical meaning and that the effects of pulses and delays can be thought of as
geometrical rotations. To emphasise this connection the discussion will start
with abrief summary of the vector model.

2.1 Vector model of NMR

The vector model is a complete description of the behaviour of an ensemble (a
macroscopic sample) of non-interacting spin-half nuclei. Each spin has two
energy levels and at equilibrium the lower of these is more populated. The
result is a net magnetization of the sample along the direction of the applied
magnetic field (taken to be the z-direction). The vector model focuses entirely
on the behaviour of this magnetization, which can be represented as a vector.

Radiofrequency pulses are represented as rotations about the x- or y-axes; if
the radiofrequency field strength is cu (rad s™) then a pulse applied for atime t

causes a rotation through an angle a, where a = wt. For example a 90° pulse

about thex-axis hasut = 772 and rotates magnetization from thaxis onto the
—y-axis.

Free precession is represented as a rotation abomattie at frequency?
(rad s%), where Q is the offset (that is the difference between the Larmor
frequency and the transmitter frequency). Free precession for atime t causes a
rotation through an angle a, where a = (.

Only x- and y-magnetization are directly observable in an NMR experiment;
it is the precession of the magnetization in the xy-plane which gives rise to the
free induction signal.

2.1.1 Example — the conventional pulse-acquire experiment

Assume that the system starts at equilibrium; a pulse of flip angle a is applied
and then the free induction signal is recorded. Let the equilibrium
magnetization (aligned along the z-axis) have size My. After the pulse the z-
and y-magnetization (M, and My, respectively) are

M; = cos a Mg My =-sinaMg

Free precession, which is a rotation about the z-axis, has no effect on the z
component. The y-component rotates in the xy-plane giving the following
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transverse components after timet

My(t) =-sinacos@Qt My  My(t) =sinasinQt Mg

It is these transverse (that is, x and y) components of the magnetization that are
detected in NMR experiments. It is seen that these are oscillating at frequency

Q, and that their overall size depends on the sine of the flip angle i.e. they are a
maximum for a 90° pulse.

2.1.2 Example — the spin echo

a b e f _
90° (x) ——delay r——180°(x) —delay r—— acquire

a b c d e f

y-component

P D @
TP B E

X-component

After the delay, point b, the vector can be resolved into y- and x-components as
shown inc. The 180° pulse about tixeaxis has no effect on thecomponent
of the magnetization; in contrast tiggomponent is rotated by 180° in tie
plane, ending up along the opposite axis. The individual components after the
180° pulse are shown oh and corresponding vector is showrein The effect
of the 180° pulse about theaxis is to reflect the vector in the-plane.
During the second time the vector precesses in the same direction as it did
during the first timer and through the same angle, ending up along-éxés.

At the end of the sequence the vector always ends up alongatkis,

regardless of the timeand the offset; the sequence is said to "refocus the offset
(or shift)".

2.2 Operators for one spin

2.2.1 Operators

Operators are mathematical functions which arise in quantum mechanics (see

lecture 1); as their name suggest, they operate on functions. In quantum

mechanics operators represent observable quantities, such as energy, angular
momentum and magnetization.
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For a single spin-half, the x- y- and z-components of the magnetization are
represented by the spin angular momentum operators Iy, |y and I, respectively.
Thus at any time the state of the spin system, in quantum mechanics the density
operator, g, can be represented as a sum of different amounts of these three
operators

oft) =a(t)1, +b(t)1, +c(t)1,

The amounts of the three operators will vary with time during pulses and delays.
This expression of the density operator as a combination of the spin angular
momentum operators is exactly analogous to specifying the three components of
amagnetization vector.

At equilibrium the density operator is proportional to I, (there is only z
magnetization present). The constant of proportionality is usually unimportant,
so it is usual to write g = I

2.2.2 Hamiltoniansfor pulsesand delays

In order to work out how the density operator varies with time we need to know
the Hamiltonian (which is also an operator) which is acting during that time.

The free precession Hamiltonian (i.e. that for adelay), Hree, iS
Hfree = QI

In the vector model free precession involves a rotation at frequency Q about the
z-axis, in the quantum mechanical picture the Hamiltonian involves the z-
angular momentum operator, |, — there is a direct correspondence.

The Hamiltonian for a pulse about th@xis, House, IS

Hpulse,x = alx

and for a pulse about tlyeaxis it is

Hpulse|y = Mly

Again there is a clear connection to the vector model where pulses result in
rotations about the- or y-axes.

2.2.3 Equation of motion

The density operator at time o(t), is computed from that at time 0{0) ,
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using the following relationship

o(t) = exp(-iHt) o(0) exp(iHt)

where H is the relevant hamiltonian. If H and o are expressed in terms of the
angular momentum operators if turns out that this equation can be solved easily
with the aid of afew rules.

Suppose that an x-pulse, of duration t, is applied to equilibrium
magnetization. In this situation H = alx and o(0) = |, the equation to be
solved is

a(tp) = exp(—iwltpl X) [, expﬁa)ltp IX)

Such equations involving angular momentum operators are common in
guantum mechanics and the solution to them are already all know. The identity
required here to solve this equation is

exp(—iax) Izexp(iélx)zcosé?Iz—sinéfly [2.1]

Thisisinterpreted as a rotation of |1, by an angle 8 about the x-axis. By putting
6= i, thisidentity can be used to solve Eqgn. [2.1]

a(tp) =coswt, |, —sinwt, |,

Theresult is exactly as expected from the vector model: a pulse about the x-axis
rotates z-magnetization towards they-axis, with a sinusoidal dependence on
the flip angle 6.

2.2.4 Standard rotations
Given that there are only three operators, there are a limited number of

identities of the type of Egn. [2.1]. They all have the same form

exp(— ia a) {old operator} exp(i a a)
= cos@ {old operator} +siné { new operator}

where {old operator}, {new operator} anid are determined from the three
possible angular momentum operators according to the following diagrams; the
label in the centre indicates which axis the rotation is about
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First example: find the result of rotating the operator 1, by 8 about the x-axis,
that is

exp(—iax) I, exp(iax)

For rotations about x the middle diagram |1 isrequired. The diagram shows that
ly (the "old operator”) is rotated to |, (the "new operator"). The required identity
istherefore

exp(- 16x) lyexp(i8y) = cosbly + sinbl,

Second example: find the result of

exp(- i) {- 13 exp(i6l,)

Thisis arotation about y, so diagram |11 is required. The diagram shows that —
I, (the "old operator”) is rotated td,—(the "new operator'). The required
identity is therefore

exp(—iay){— Iz}exp(iay)zcose{— IZ} +sin6?{—|x}

=-cosf |, - sing I,

Finally, note that a rotation of an operator about its own axis has no effect e.g. a
rotation of I about x leaves I, unaltered.
2.2.5 Shorthand notation

To save writing, the arrow notation is often used. In this, the term Ht is written
over an arrow which connects the old and new density operators. So, for
example, the following

a(tp) = exp(—iwltplx) 0(0) expﬁwltpl X)
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ISwritten
o(0) Ot - oft,)
For the case where o(0) = I,

I, 0O iy coswit, I, —sinat 1,
2.2.6 Example calculation: spin echo

a b e f
90°(x) —— delay r——180°(x) —— delay r—— acquire

At a the density operator isl—~ The transformation frona to b is free
precession, for which the Hamiltoniand3,; the delayr therefore corresponds
to a rotation about theaxis at frequency?. In the short-hand notation this is

-1, 0t - o(b)

To solve this diagrarhabove is needed with the angle2r, the "new operator”
IS Ix

-1, 0t - —cosQrl, +sinQrl,

In words this says that the magnetization precesses froowards .

The pulse about has the Hamiltoniamuly; the pulse therefore corresponds
to a rotation about for a timet, such that the anglejt,, is 7rradians. In the
shorthand notation

—cosQr |, +snQrl, 08 - o(e) [2.2]

Each term on the left is dealt with separately. The first term is a rotatipn of
aboutx; the relevant diagram is thlis

—-cosQrl, U Py —cosQrcoswt, |, —cosQrsinat, |,
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However, the flip angle of the pulse, aity, is 77so the second term on the right is
zero and the first term just changes sign (cos 77= —1); overall the result is

-cosQrl, Dm—»COSQTIV

The second term on the left of Eqn. [2.2] is easy to handle as it is unaffected by
a rotation about. Overall, the effect of the 180° pulse is then

—cosQrl, +snQrl, O - cosQrl, +snQrl, [2.3]

As was shown using the vector model, yp@mponent just changes sign. The
next stage is the evolution of the offset for timégain, each term on the right
of Eqgn. [2.3] is considered separately

cosQrl, O - cosQrcosQr |, —snQrcosQrl,

snQrl, Ot - cosQrsinQrl, +snQrsinQrl,

Collecting together the termslipandly the final result is

(cosQrcosQr+sinQrsinQr) |, +(cosQrsinQr -sinQ7cosQr) I,

The bracket multiplyindy is zero and the bracket multiplyinigis =1 because
of the identity cos9+ sifd=1. Thus the overall result of the spin echo
sequence can be summarised

|, O YT T -,

In words, the outcome is independent of the offset, ©Q, and the delay 1, even
though there is evolution during the delays. The offset is said to be refocused
by the spin echo.

In general the sequence
—71-180°) — 17— [2.4]

refocuses any evolution due to offsets; this is a very useful feature which is
much used in multiple-pulse NMR experiments.

One further point is that as far as the offset is concerned the spin echo
sequence of Eqn. [2.4] is just equivalent to 180°(
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2.3 Operators for two spins

2.3.1 Product operatorsfor two spins

The product operator approach comes into its own when coupled spin systems
are considered; such systems cannot be treated by the vector model. However,
product operators provide a clean and simple description of the important
phenomena of coherence transfer and multiple quantum coherence.

2.3.2 Product operatorsfor two spins

For a single spin the three operators needed for a complete description are Iy, |y
and |,. For two spins, three such operators are needed for each spin; an
additional subscript, 1 or 2, indicates which spin they refer to.

spin1: Iy lay lag PIN2: I loy 12
l1, represents z-magnetization of spin 1, and I, likewise for spin 2. 1
represents x-magnetization on spin 1. As spin 1 and 2 are coupled, the
spectrum consists of two doublets and the operator 11, can be further identified
with the two lines of the spin-1 doublet. In the language of product operators |1«
Is said to represent in-phase magnetization of spin 1; the description in-phase
means that the two lines of the spin 1 doublet have the same sign and lineshape.
Following on in the same way |4 represents in-phase magnetization on spin
2. liy and 1, aso represent in-phase magnetization on spins 1 and 2,
respectively, but this magnetization is aligned along y and so will giveriseto a
different lineshape. Arbitrarily, an absorption mode lineshape will be assigned
to magnetization aligned along x and a dispersion mode lineshape to
magnetization along y.

I
Y

There are four additional operators which represent anti-phase
magnetization: 2l o, 2laylos, 21142y, 21122y (the factors of 2 are needed for
normalization purposes). The operator 21142, is described as magnetization on
spin 1 which is anti-phase with respect to the coupling to spin 2.

| 4 hy

0

by | 4

€2,




1 2 leIZZ ‘ . 2 IlyIZZ
QI:LY ) )

0

2 IlzIZX 1 2 IlzIZy ‘ .
) Q;] )

0,

Note that the two lines of the spin-1 multiplet are associated with different spin
states of spin-2, and that in an anti-phase multiplet these two lines have
different signs. Anti-phase terms are thus sensitive to the spin states of the
coupled spins.

There are four remaining product operators which contain two transverse
(i.e. x- or y-operators) terms and correspond to multiple-quantum coherences,
they are not observable

Finally there is the term 211,15, which is aso not observable and corresponds to
aparticular kind of non-equilibrium population distribution.

2.3.3 Evolution under offsets and pulses

The operators for two spins evolve under offsets and pulses in the same way as
do those for a single spin. The rotations have to be applied separately to each
spin and it must be remembered that rotations of spin 1 do not affect spin 2, and
vice versa.

For example, consider 114 evolving under the offset of spin 1 and spin 2. The
relevant Hamiltonian is

Hiree = il 1 + 0l 5,

where ; and @, are the offsets of spin 1 and spin 2 respectively. Evolution
under this Hamiltonian can be considered by applying the two terms
sequentialy (the order isimmaterial)

I, O -
N
PR i i) N

Thefirst "arrow" is arotation about z
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I, OB - cosQitl,, +sinQ,tl,, O 8-

The second arrow leaves the intermediate state unaltered as spin-2 operators
have not effect on spin-1 operators. Overall, therefore

I, OB'ETT - cosQutl, +sinQtl,

A second example is the term 21141, evolving under a 90° pulse about the
axis applied to both spins. The relevant Hamiltonian is

H :a)llly +a)1|2y

The evolution can be separated into two successive rotations

21,1, Oty oty -

The first arrow affects only the spin-1 operators; a 90° rotation, @bouty
gives -1, (remembering thadxt = 772 for a 90° pulse)

21, 1,, O - coswt2l 1, —sinwt2l 1, O -
21, 1,, Oty 21,1, OHy -

The second arrow only affects the spin 2 operators; a 90° rotatoabafuty
takes it tax

21,1, 0ty L 211, 0B - -21,1,,

The overall result is that anti-phase magnetization of spin 1 has been transferred
into anti-phase magnetization of spin 2. Such a process is calteckence
transfer and is exceptionally important in multiple-pulse NMR.

2.3.4 Evolution under coupling

The new feature which arises when considering two spins is the effect of
coupling between them. The Hamiltonian representing this coupling is itself a
product of two operators:
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where Jy» isthe coupling in Hz.

Evolution under coupling causes the interconversion of in-phase and anti-
phase magnetization according to the following diagrams

/\/\
NN

angle = Tt

For example, in-phase magnetization along x becomes anti-phase aong y
according to the diagrand

I, O 4T - cosmtl, +sinmd,t21 1,

note that the angle is ot i.e. half the angle for the other rotations, I-11.

Anti-phase magnetization alongbecomes in-phase magnetization algng
using diagranV:

21,1, O - cosrd,,t 21,1, +sinrdy,tl,,
The diagrams apply equally well to spin-2; for example
—2l,,1,, OFPHHT & —cosd,,t 21,1, + sivdy,tl,

Complete interconversion of in-phase and anti-phase magnetization requires
adelay such that Tt =102 i.e. adelay of 1/(2J;2). A delay of 1/J;, causes in-
phase magnetization to change its sign:

o O EPelts (e - 21 oy O EPETH3 (7R - -1,

1y 2z

2.4 Spin echoes

It was shown in section 2.2.6 that the offset is refocused in a spin echo. In this
section it will be shown that the evolution of the scalar coupling is not
necessarily refocused.
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2.4.1 Spin echoesin homonuclear spin system

In this kind of spin echo the 180° pulse affects both spmsit is a non-
selective pulse:

— 17— 180°¢k, to spin 1 and spin 2) —

At the start of the sequence it will be assumed that only in-pkase
magnetization on spin 1 is presels: In fact the starting state is not important
to the overall effect of the spin echo, so this choice is arbitrary.

It was shown in section 2.2.6 that the spin echo applied to one spin refocuses
the offset; this conclusion is not altered by the presence of a coupling so the
offset will be ignored in the present calculation. This greatly simplifies things.

For the first delayr only the effect of evolution under coupling need be
considered therefore:

|, O EPE T - cosm,r 1, +sinmd,T 21,1,

The 180° pulse affects both spins, and this can be calculated by applying the
180° rotation to each in succession

cosr,T |, +sinmd,7 21,1, Ot - Oofr -

where it has already been written in tlat, = 11, for a 180° pulse. The 180°
rotation abouk for spin 1 has no effect on the operdtQrandl,,, and it simply
reverses the sign of the operatgr

cosry, My, +sinmd, 21, 1,, Ot - cosmd, i, —sinm,r21,1,, 01 -

The 180° rotation aboutfor spin 2 has no effect on the operalgraindl,y,
but simply reverses the sign of the opergtorThe final result is thus

cosrd,, 1, +sinmd, 1211, O - cosm,d,, —sinmd, 1211,

01 - cosmd, o, +sinmd,r21,1,,

Nothing has happened; the 180° pulse has left the operators unaffected! So, for
the purposes of the calculation it is permissible to ignore the 180° pulse and
simply allow the coupling to evolve forr2 The final result can therefore just be
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written down:

l,, O 08 - cos2m,, 1, +sin2m,,7 21,1,
From thisit is easy to see that complete conversion to anti-phase magnetization
requires 270,71 = 712 i.e. 7= 1/(4 Jy).

The calculation is not quite as simple if the initial state is chosen as 14y (see
exercises), but the final result is just the same — the coupling evolves for 2

I, OO - —cos27,, 71, +sin27d,,7 21,1,
In fact, the general result is that the sequence
— 71— 180°k, to spin 1 and spin 2) —
is equivalent to the sequence
— 21— 180°k, to spin 1 and spin 2)

in which the offset is ignored and coupling is allowed to act for time 2

2.4.2 Interconverting in-phase and anti-phase states

So far, spin echoes have been demonstrated as being useful for generating anti-
phase terms, independent of offsets. For example, the sequence

90°(x) — 1/(4)12) — 180°K) — 1/(4)12) —

generates pure anti-phase magnetization.
Equally useful is the sequence

— 1/(415) — 180°K) — 1/(4)r2) —

which will convert pure anti-phase magnetization, suchla$2into in-phase
magnetizationly.
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2.4.3 Spin echoesin heteronuclear spin systems

If spin 1 and spin 2 are different nuclear species, such as *C and 'H, it is
possible to choose to apply the 180° pulse to either or both spins; the outcome
of the sequence depends on the pattern of 180° pulses.

Sequencea has already been analysed: the result is that the offset is
refocused but that the coupling evolves for tinte 3equencé still refocuses
the offset of spin 1, but it turns out that the coupling is also refocused.
Sequencec refocuses the coupling but leaves the evolution of the offset
unaffected.

2.4.3.1 Sequenceb

It will be assumed that the offset is refocused, and attention will therefore be
restricted to the effect of the coupling

|, O EPEE - cosm,r 1, +sinmd,T 21,1,
The 180°K) pulse is only applied to spin 1
cos,, T |y, +sin7dy,7 21,1, O - cosm,r 1, —sinm,r 21,,1,,[2.5]

The two terms on the right each evolve under the coupling during the second
delay:

cosrd,,r |, 0Pty -

CoS7d,, T CoSTh,, T |y, +sin7dy, Tcosrd,,T 21, 1,
—sin7d,,7 21,1, O

—C0oS70,,7SINTD,,T 21, 1, +Sin7d,T SIN70,,T |,

Collecting the terms together and noting that8essirfd= 1 the final result is
justliy. In words, the effect of the coupling has been refocused.

2.4.3.2 Sequencec

As there is no 180° pulse applied to spin 1, the offset of spin 1 is not refocused,
but continues to evolve for timer.2 The evolution of the coupling is easy to
calculate:
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|, O s - cosmy,r 1, +sin/d,T 21,1,
This time the 180%) pulse is applied to spin 2
cos7dy,T 1y, +sinmd,T 21, 1, 0 i = cosrd,r I, —sinm,,T 21,15,

The results is exactly as for sequetcéEqgn. [2.5]), so the final result is the
same.e. the coupling is refocused.

2.4.3.3 Summary

In heteronuclear systems it is possible to choose whether or not to allow the
offset and the coupling to evolve; this gives great freedom in generating and
manipulating anti-phase states which play a key role in multiple pulse NMR

experiments.

2.5 Multiple quantum terms

2.5.1 Coherenceorder

In NMR the directly observable quantity is the transverse magnetization, which
in product operators is represented by terms sut¢h asd 21,5, Such terms

are examples of single quantum coherences, or more generally coherences with
order,p, = 1. Other product operators can also be classified according to
coherence ordez.g. 211,12, hasp = 0 and 24l has bothp = 0 (zero-quantum
coherence) and +2 (double quantum coherence). Only single quantum
coherences are observable.

In heteronuclear systems it is sometimes useful to classify operators
according to their coherence orders with respect to each spin. So, for example,
21,5 hasp = 0 for spin 1 ang = +1 for spin 2.

2.5.2 Raising and lowering operators

The classification of operators according to coherence order is best carried
out be re-expressing the Cartesian operajaaadly in terms of the raising and
lowering operatord,. andl_, respectively. These are defined as follows

=1 +il, =1, -l [2.6]

wherei is the square root of —1 (further details of why these operators are called
the raising and lowering operators will be given in lecturellhas coherence
order +1 and_ has coherence order —1; coherence ordesigned quantity.
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Using the definitions of Eqgn. [2.6] Iy and |y can be expressed in terms of the
raising and lowering operators

=2, +1) 1, =41 -1) [2.7]

from which it is seen that I, and |, are both mixtures of coherences with p = +1
and —1.

The operator productlglox can be expressed in terms of the raising and
lowering operators in the following way (note that separate operators are used
for each spinty: and 15.)

- 1 1
2|1x|2x _2x2(|1+ +|1—)x2(|2+ +|2—)

[2.8]
:%(|1+|2+ + |1—|2—)+%(|1+|2' * Il_|2+)

Thefirst term on the right of Eqgn. [2.8] has p = (+1+1) = 2 and the second term

hasp = (-1-1) = —2; both are double quantum coherences. The third and fourth
terms both have = (+1-1) = 0 and are zero quantum coherences. The value of
p can be found simply by noting the number of raising and lowering operators
in the product.

The pure double quantum part of2x is, from Eqn. [2.8],

double quantum part[2llxlzx] = %(|1+|2+ + |1_|2_) [2.9]

The raising and lowering operators on the right of Egn. [2.9] can be re-
expressed in terms of the Cartesian operators:

%(|1+|2+ + I1—|2—) :%[(le +i|1y)(|2x +i|2y) +(|1x _“ly)(IZX _iIZy)]
:%[ZIlXIZX +2|ly|2y]
So, the pure double quantum part bl is %(lexl2X + 2|1y|2y); by a similar

method the pure zero quantum part can be shown tb(bblxlzx —2|1y|2y).

Some further useful relationships are given in section 2.9

2.5.3 Definition of coherence order

The formal definition of coherence order depends on the response of a
particular operator to a rotation about thaxis. A coherence or operator of
orderp acquires a phagapwhen rotated about ttzeaxis through an anglg
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This property will be used extensively as part of the description of coherence
selection by phase cycling or gradient pulses, lecture 4.

2.6 Three spins

The product operator formalism can be extended to three or more spins. No
really new features arise, but some of the key ideas will be highlighted in this
section. The description will assume that spin 1 is coupled to spins 2 and 3
with coupling constants J;» and Ji3; in the diagrams it will be assumed that J;»
> Jis.

2.6.1 Typesof operators

|14 represents in-phase magnetization on spin 1; 2|14, represents magnetization
anti-phase with respect to the coupling to spin 2 and 2ld3, represents
magnetization anti-phase with respect to the coupling to spin 3. 4lyl2l3;
represents magnetization which is doubly anti-phase with respect to the
couplings to both spins 2 and 3.

As in the case of two spins, the presence of more than one transverse
operator in the product represents multiple quantum coherence. For example,
2l 1,2« isamixture of double- and zero-quantum coherence between spins 1 and
2. The product 41,1243, is the same mixture, but anti-phase with respect to the
coupling to spin 3. Products such as 4l 213« contain, amongst other things,
triple-quantum coherences.

2.6.2 Evolution

Evolution under offsets and pulses is ssimply a matter of applying sequentially
the relevant rotations for each spin, remembering that rotations of spin 1 do not
affect operators of spins 2 and 3. For example, the term 21,1, evolves under
the offset in the following way:

21,1, OB - 08 - OB - cosQut 21,1, +sinQ,t 21,1,

The first arrow, representing evolution under the offset of spin 1, affects only
the spin 1 operator 11x. The second arrow has no effect as the spin 2 operator |,
and thisis unaffected by a z-rotation. The third arrow aso has no effect as there
are no spin 3 operators present.

The evolution under coupling follows the same rules as for a two-spin
system. For example, evolution of I, under the influence of the coupling to
spin 3 generates 214yl 3,
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|, O EPEHT - cosrdygt |y, +sin7dyt 21,1,

Further evolution of the term 2I4y 13, under the influence of the coupling to spin
2 generates a doubl e anti-phase term

21,1, OFFPET - cosmt 21,1, —sinmdyt 41,,1,,15,

In this evolution the spin 3 operator if unaffected as the coupling does not
involve this spin. The connection with the evolution of |1, under a coupling can
be made more explicit by writing 213, as a"constant” y

yly, OB & cosmyt yl,, —sinmygt 2yl 1,
which compares directly to

I, O3 & cosmut 1y, —sinmdyt 21,1,

2.7 Alternative notation

In this chapter different spins have been designated with a subscript 1, 2, 3 ...
Another common notation is to distinguish the spins by using a different letter
to represent their operators; commonly | and Sare used for two of the symbols

2|1x|22 = 2IXSZ

Note that the order in which the operators are written is not important, although
it is often convenient (and tidy) always to write them in the same sequence.

In heteronuclear experiments a notation is sometimes used where the letter
represents the nucleus. So, for example, operators referring to protons are given
the letter H, carbon-13 atoms the letter C and nitrogen-15 atoms the letter N;
carbonyl carbons are sometimes denoted C. For example, 4CH/N, denotes
magnetization on carbon-13 which is anti-phase with respect to coupling to both
proton and nitrogen-15.

2.8 Conclusion

The product operator method as described here only applies to spin-half nuclei.
It can be extended to higher spins, but significant extra complexity is
introduced; details can be found in the article by Sgreasah (Prog. NMR
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Soectrosc. 16, 163 (1983)).

The main difficulty with the product operator method is that the more pul ses
and delays that are introduced the greater becomes the number of operators and
the more complex the trigonometrical expressions multiplying them. If pulses
are either 90° or 180° then there is some simplification as such pulses do not
increase the number of terms. As will be seen in lecture 3, it is important to try
to simplify the calculation as much as possible, for example by recognizing
when offsets or couplings are refocused by spin echoes.

A number of computer programs are available for machine computation
using product operators within programs sucMathematica or Maple. These
can be very labour saving.
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2.9 Multiple -quantum coherence

2.9.1 Multiple-quantum terms

In the product operator representation of multiple quantum coherences it is
usual to distinguish between active and passive spins. Active spins contribute
transverse operators, such as Iy, Iy and I+, to the product; passive spins
contribute only z-operators, I,. In a sense the spins contributing transverse
operators are "involved" in the coherence, while those contributing z-operators
are simply spectators.

For double- and zero-quantum coherence in which spinsi and j are active it
is convenient to define the following set of operators which represent pure
multiple quantum states of given order. The operators can be expressed in
terms of the Cartesian or raising and lowering operators.

double quantum, p = +2
DQY) =4(21,1, -21,1,)

X" jx iy iy

1
7(“Jj++IFlk)

1 —
m(h+H+ h—“—)

(|i+|j_+|i—lj+)

1 —
2i(|i+|j— Ii—|j+)

DQY) =3(21,1, +21,1,)

ix ' jy iy ' jx

zero quantum, p=0
ZQ(XIJ) %(Zlixljx +2|iy|jy)
ZQ@)

I}
N

Harg, -21,0,)

iy ' jx ix'jy

2.9.2 Evolution of multiple -quantum terms

2.9.2.1 Evolution under offsets

The double- and zero-quantum operators evolve under offsetsin away which is
entirely analogous to the evolution of I, and |, under free precession except that
the frequencies of evolution are (2 + (2) and (2 — Q) respectively:

J

QW oHEPLF - cofo, +Q,

J

Q! oMty - codo, +0, JtpQl +sing, + @, JtDQl!)
JioQ)! —sinfa 0 JroQl!
ZQE(U) BN CO{Qi -Q, )t ZQE(”) + Sin(Qi _ Qj)t ZQ(;J')

zQU o Py - cod@, -, JtzQW -sin(@, -, )rzQW

J
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2.9.2.2 Evolution under couplings

Multiple quantum coherence between spins i and j does not evolve under the
influence of the coupling between the two active spins, i and j.

Double- and zero-quantum operators evolve under passive couplings in a
way which is entirely analogous to the evolution of I, and Iy; the resulting
multiple quantum terms can be described as being anti-phase with respect to the
effective couplings:

DQY M . cos7dpqt DQUW +cosmlyg 4t 21, DQY
DQY M . cosrdpgt DQU —sinmd g .t 21,,DQY
ZQW M - o870t ZQW +sinm ot 21,,2Q1
ZQW M ~ o870t ZQYW —sinq 4t 21,,2QY

Jpoqr 1S the sum of the couplings between spin i and al other spins plus the
sum of the couplings between spin j and all other spins. J,, 4 is the sum of the

couplings between spin i and all other spins minus the sum of the couplings
between spin | and all other spins.

For example in a three-spin system the zero-quantum coherence between
spins 1 and 2, anti-phase with respect to spin 3, evolves according to

215,2Q0? M - cosTd,q gt 21,ZQ%Y —sinm 4t ZQY
where J,o4 = J;, — Jpg

Further details of multiple-quantum evolution can be found in section 5.3 of
Ernst, Bodenhausen and Wokaun Principles of NMR in One and Two
Dimensions (Oxford University Press, 1987).
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