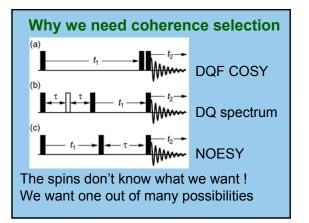
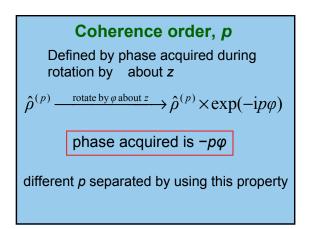
EUROMAR 2011

Coherence order and coherence selection

James Keeler

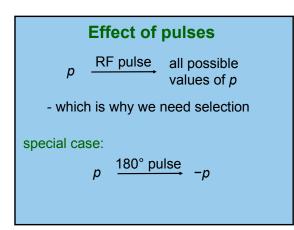
UNIVERSITY OF CAMBRIDGE Department of Chemistry

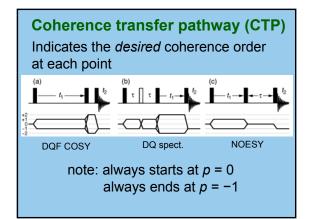

Outline

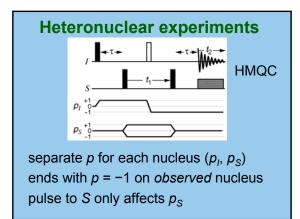

- Why we need coherence selection
- Concept of coherence order
- Coherence transfer pathways (CTPs)
- Selecting a CTP with phase cycling
- Selecting a CTP with gradients
- Suppression of zero-quantum coherence

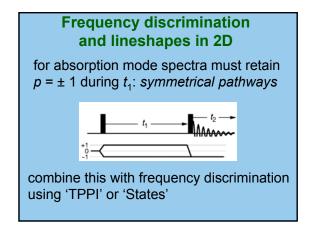
Further information

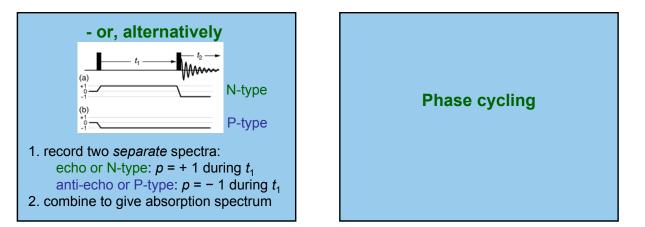
- PDF of these slides available at http://www-keeler.ch.cam.ac.uk/
- See also: Understanding NMR Spectroscopy, James Keeler (Wiley) [Chapt. 11]

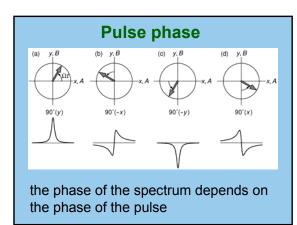

Spin Dynamics. Basics of Nuclear Magnetic Resonance, Malcolm Levitt (Wiley)






Properties of coherence order


- takes values 0, ±1, ±2 ...
 - 0 is z-magnetization,
 - ±1 is single quantum,
 - ±2 is double quantum etc.
- only p = -1 is observable
- maximum/minimum value is $\pm N$, where *N* is number of spins



Receiver phase

If the signal generated by the pulse sequence shifts in phase, then this can always be compensated for by shifting the receiver by the same amount.

Phase cycling

Selection of a pathway by repeating the sequence with a systematic variation of the pulse and rx. phases

How to design the sequence of phases, - the *phase cycle*?

Effe	ct of phase shift of pulse
	(a) p_1
	causes transfer from p_1 to p_2 ge in coherence order $\Delta p = p_2 - p_1$
•	e phase shifted by $arDelta arphi$ phase red by signal is
	$-\Delta p \times \Delta \varphi$

Selec	tion of a single pathway
	(b) +2 +1 -2 -2
+2	to -1 , so $\Delta p = -1 - (+2) = -3$
	acquired by signal when pulse I by Δφ is
	$-\Delta p \times \Delta \phi = 3 \Delta \phi$

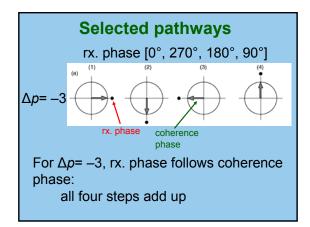
1 0° 2 90° 3 180°	Four-step cycle									
2 90° 3 180°	step	pulse Δφ	3 Δφ	equiv(3 Δφ)						
3 180°	1	0°								
	2	90°								
4 270°	3	180°								
4 270	4	270°								

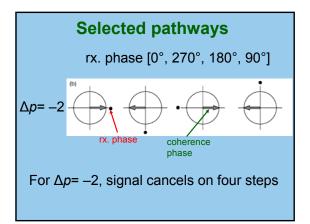
Four-step cycle						
step	pulse Δφ	3 Δφ	equiv(3 $\Delta \phi$)			
1	0°	0°				
2	90°	270°				
3	180°	540°				
4	270°	810°				

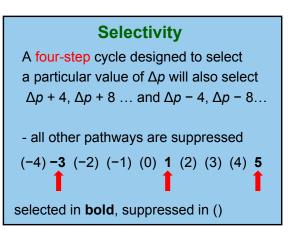
Four-step cycle									
step	pulse Δφ	3 Δφ	equiv(3 Δφ)						
1	0°	0°	0°						
2	90°	270°	270°						
3	180°	540°	180°						
4	270°	810°	90°						

Four-step cycle

Pulse goes [0°, 90°, 180°, 270°]

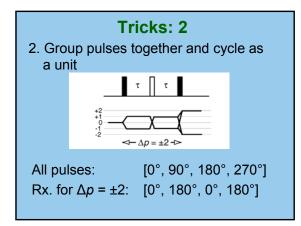

Pathway with $\Delta p = -3$ acquires phase [0°, 270°, 180°, 90°]


If receiver phase follows these phases, contribution from the pathway will add up


- but what about other pathways?

	- other pathways								
e	e.g. $\Delta p = -2$ so $-\Delta p \times \Delta \phi = 2 \Delta \phi$								
	step	pulse Δφ	2 Δφ	equiv(2 Δφ)					
	1	0°	0°	0°					
	2	90°	180°	180°					
	3	180°	360°	0°					
	4	270°	540°	180°					

Selected with rx. phases [0°, 270°, 180°, 90°] ?

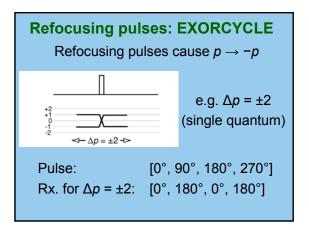

Со	mbining	phase of	cycles
		Δφ ₂	
	$^{+2}_{-1}$ $^{-1}_{-2}$ $\Delta p = +1$	Δ <i>p</i> = -2	
four-s	tep cycle to	select Ap	o = +1
step	pulse $\Delta \phi_1$	- Δφ ₁	equiv($-\Delta \phi_1$)
1	0°	0°	0°
2	90° -90°		270°
3	180°	-180°	180°
4	270°	-270°	90°

Co	mbining	phase	cycles
	Δφ1		
	$^{+2}_{-1}$ $^{-1}_{-2}$ $\Delta p = +1$	Δ <i>p</i> = -2	
four-s	step cycle to		p = −2
step	pulse $\Delta \phi_2$	2 Δφ ₂	equiv($-\Delta \phi_2$)
1	0°	0°	0°
2	90°	180°	180°
3	180°	360°	0°
4	270°	540°	180°

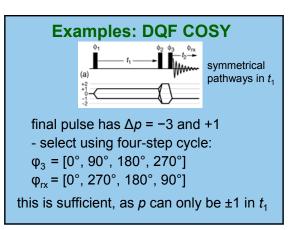
step	Δφ1	- Δφ ₁	equiv(−Δφ₁)	$\Delta \phi_2$	2 Δφ ₂	equiv(2Δφ₂)	total
1	0°	0°	0°	0°	0°	0°	0°
2	90°	-90°	270°	0°	0°	0°	270°
3	180°	-180°	180°	0°	0°	0°	180°
4	270°	-270°	90°	0°	0°	0°	90°
5	0°	0°	0°	90°	180°	180°	180°
6	90°	-90°	270°	90°	180°	180°	90°
7	180°	-180°	180°	90°	180°	180°	0°
8	270°	-270°	90°	90°	180°	180°	270°
9	0°	0°	0°	180°	360°	0°	0°
10	90°	-90°	270°	180°	360°	0°	270°
11	180°	-180°	180°	180°	360°	0°	180°
12	270°	-270°	90°	180°	360°	0°	90°
13	0°	0°	0°	270°	540°	180°	180°
14	90°	-90°	270°	270°	540°	180°	90°
15	180°	-180°	180°	270°	540°	180°	0°
16	270°	-270°	90°	270°	540°	180°	270°

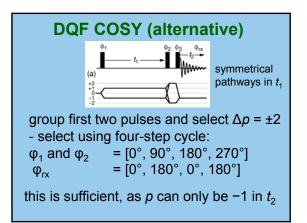
Tricks: 1

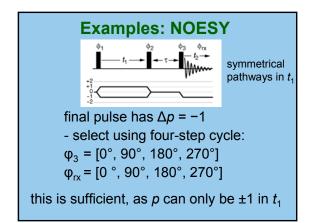
- The first pulse can *only* generate
 p = ±1 from equilibrium magnetization
- no need to phase cycle this pulse

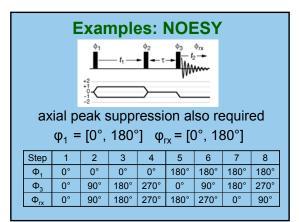

Tricks: 3

 Only *p* = −1 is observable, so it does not matter if other values of *p* are generated by the *last pulse*

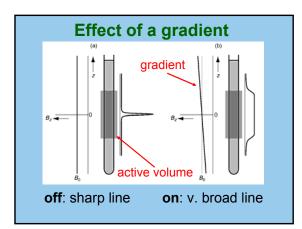

- no need to phase cycle the *last pulse*, if a coherence order has been selected unambiguously *before* this pulse


Tricks: 4

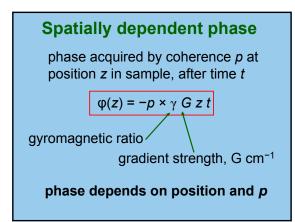

- Don't worry about high orders of multiple quantum coherence e.g ≥ 4.
- they are hard to generate and likely to give weak signals, especially if the lines are broad

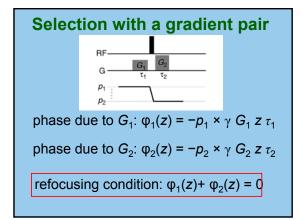


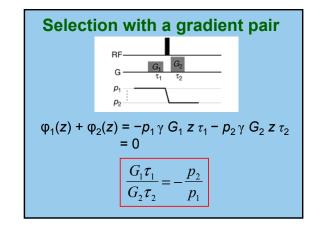
 z-magnetization which recovers by relaxation during a pulse sequence is made observable by last pulse leads to peaks at ω₁=0: axial peaks easily suppressed using a two-step cycle
- easily suppressed using a two-step cycle
1 st pulse: [0°, 180°]
Rx. for $\Delta p = \pm 1$: [0°, 180°]

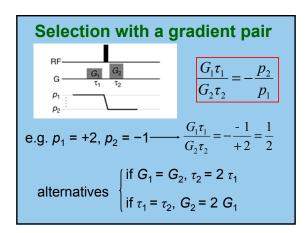

Problems with phase cycling

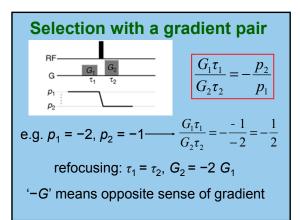
- phase cycle must be completed:
 unacceptably long experiment, especially for 2D/3D
- cancellation of unwanted signals may be imperfect (especially for proton detected experiments)

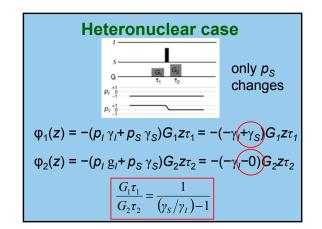

Gradient pulses

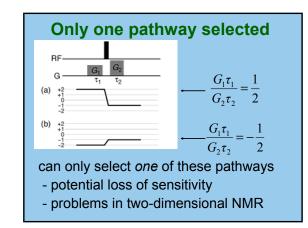

Field gradient pulses

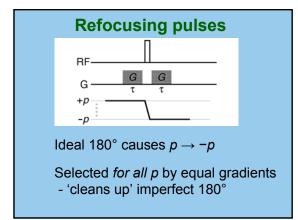

- the B_0 field is made inhomogeneous for a short period (few ms)
- coherences dephase, all signal lost
- a subsequent gradient may rephase some of the coherences

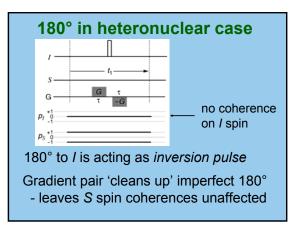


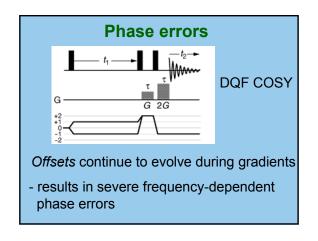


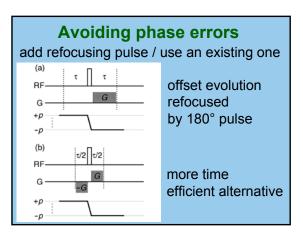




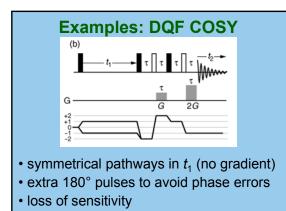


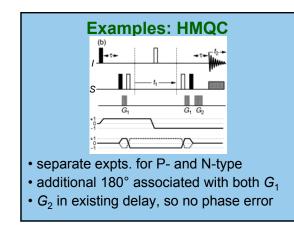


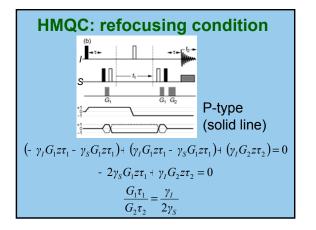


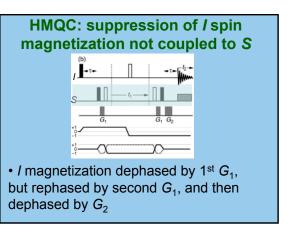


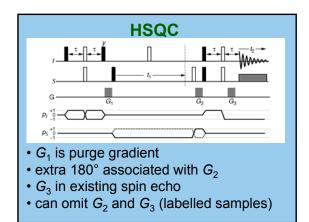
Selection of *z*-magnetization


A gradient dephases all* coherences:


- leaves behind only *z*-magnetization - simple and convenient


- simple and convenient


called a *purge gradient* or *homospoil*


*except homonuclear zero-quantum

Advantages and disadvantages

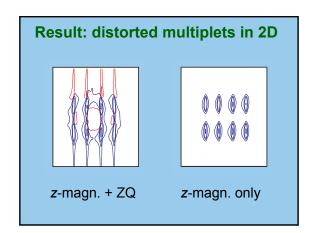
- + minimizes experiment time
- + excellent suppression, especially in heteronuclear experiments with ¹H obs.
- cannot select more than one pathway
- \rightarrow possible loss of SNR
- \rightarrow obtaining pure phase more complex
- phase errors
- \rightarrow requires elaboration of sequence
- loss due to diffusion

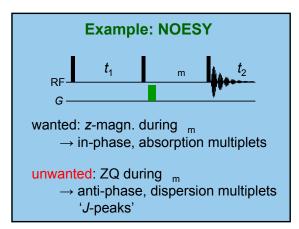
Zero-quantum dephasing

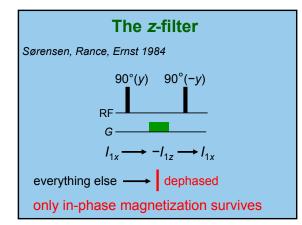
An old, old problem in NMR

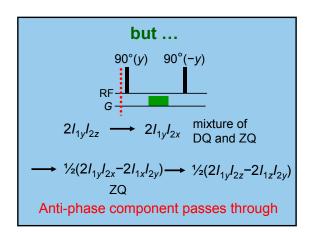
z-magnetisation and zero-quantum coherence cannot be separated using phase cycling or gradients

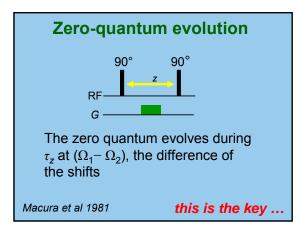
because neither respond to *z*-rotations

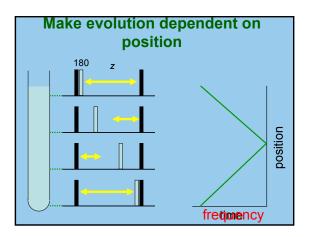

i.e. both have coherence order, *p*, of zero

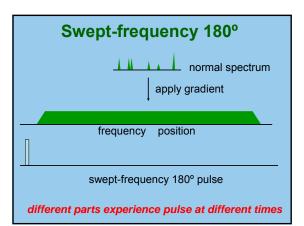

Why is it a problem?

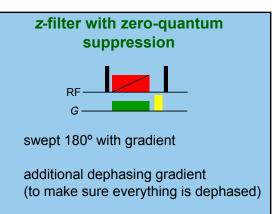

a 90° pulse converts *z*-magnetization into **in-phase** magnetization along *y*

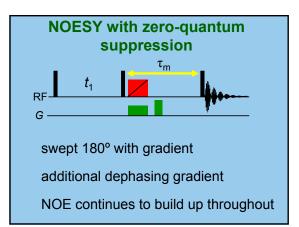

but converts ZQ into **anti-phase** along *x*

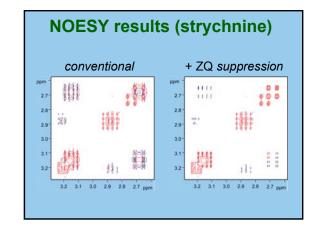

the result is phase distortion and unwanted peaks

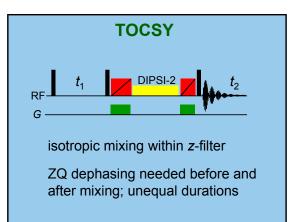


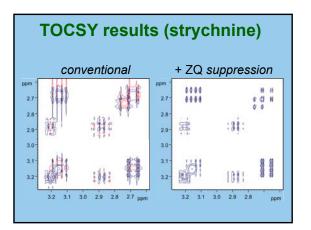


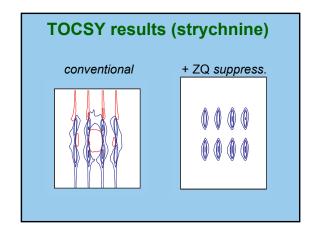


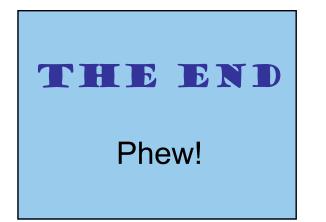

Zero-quantum dephasing As frequency is a function of position, the zero-quantum coherence will dephase Identical to dephasing in a conventional gradient how to make 180° position dependent?

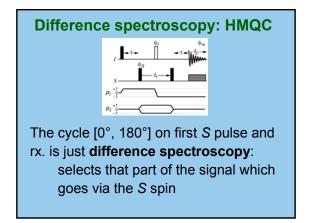





Typical parameters


- swept pulse of duration 15 to 30 ms
- gradient 1 to 2 G cm⁻¹
- dephasing rate depends on ZQ frequency
- suppression of ZQ by factor of 100





Advantages of the *z*-filter

- excellent suppression
- no increase in experiment time
- simple to implement
- widely applicable
- negligible reduction in signal

Examples: HMQC								
		Pr Ps						
select $\Delta p_s = \pm 1$ at first S pulse and $\Delta p_l = \pm 2$ at 180° <i>l</i> pulse								
step	1	2	3	4	5	6	7	8
φ _s	0°	180°	0°	180°	0°	180°	0°	180°
φ,	0°	0°	90°	90°	180°	180°	270°	270°
φ _{rx}	0°	180°	180°	0°	0°	180°	180°	0°

Difference spectroscopy

In heteronuclear experiments, a simple two-step phase cycle (+x/-x) on the pulse causing the transfer often suffices

- this is simply difference spectroscopy