3 Basic concepts for
two-dimensional NMR

3.1 Introduction

The basic ideas of two-dimensional NMR will be introduced by reference to the
appearance of a COSY spectrum; later in this lecture the product operator
formalism will be used to predict the form of the spectrum.

Conventional NMR spectra (one-dimensional spectra) are plots of intensity
vs. frequency; in two-dimensional spectroscopy intensity is plotted as a function
of two frequencies, usually calle; and F,. There are various ways of
representing such a spectrum on paper, but the one most usually used is to make
a contour plot in which the intensity of the peaks is represented by contour lines
drawn at suitable intervals, in the same way as a topographical map. The
position of each peak is specified by two frequency co-ordinates corresponding
to F; andF,. Two-dimensional NMR spectra are always arranged so th&bthe
co-ordinates of the peaks correspond to those found in the normal one-
dimensional spectrum, and this relation is often emphasized by plotting the one-
dimensional spectrum alongside theaxis.

The figure shows a schematic COSY spectrum of a hypothetical molecule’
containing just two protons, A and X, which are coupled together. The one=

Oa

dimensional spectrum is plotted alongside Eeaxis, and consists of the Sa
familiar pair of doublets centred on the chemical shifts of A and.>gnd dx

respectively. In the COSY spectrum, the co-ordinates of the peaks in the |
two-dimensional spectrum also correspond to those found in the normal ong* Ox

dimensional spectrum and to emphasize this point the one-dimensignal . . . spectrum for
spectrum has been plotted alongside Fheaxis. It is immediately clear thatwo coupled spins, A and X
this COSY spectrum has some symmetry about the diageralF, which has

been indicated with a dashed line.

In a one-dimensional spectrum scalar couplings give rise to multiplets in the
spectrum. In two-dimensional spectra the idea of a multiplet has to be
expanded somewhat so that in such spectra a multiplet consists of an array of
individual peaks often giving the impression of a square or rectangular outline.
Several such arrays of peaks can be seen in the schematic COSY spectrum
shown above. These two-dimensional multiplets come in two distinct types:
diagonal-peak multiplets which are centred around the sBmand F,
frequency co-ordinates and cross-peak multiplets which are centred around
differentF; andF, co-ordinates. Thus in the schematic COSY spectrum there
are two diagonal-peak multiplets centred~at F> = dn andF, =F;, = &, one
cross-peak multiplet centred &4, =03, F2=0x and a second cross-peak
multiplet centred af; = &, F2 = Oa.

The appearance in a COSY spectrum of a cross-peak muFipteb,,

F, = d indicates that the two protons at shidisand & have a scalar coupling

between them. This statement is all that is required for the analysis of a COSY
spectrum, and it is this simplicity which is the key to the great utility of such
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spectra. From a single COSY spectrum it is possible to trace out the whole
coupling network in the molecule.

3.1.1 General Scheme for two-Dimensional NMR

In one-dimensional pulsed Fourier transform NMR the signal is recorded as a
function of one time variable and then Fourier transformed to give a spectrum
which is a function of one frequency variable. In two-dimensional NMR the
signal is recorded as a function of two time varialileandt,, and the resulting

data Fourier transformed twice to yield a spectrum which is a function of two
frequency variables. The general scheme for two-dimensional spectroscopy is

_- evolution - detection
tl t2

In the first period, called the preparation time, the sample is excited by one
or more pulses. The resulting magnetization is allowed to evolve for the first
time period,t;. Then another period follows, called the mixing time, which
consists of a further pulse or pulses. After the mixing period the signal is
recorded as a function of the second time varidggleThis sequence of events
Is called a pulse sequence and the exact nature of the preparation and mixing
periods determines the information found in the spectrum.

It is important to realize that the signal is not recorded during thettirbet
only during the time,; at the end of the sequence. The data is recorded at
regularly spaced intervals in bdirandt,.

The two-dimensional signal is recorded in the following way. Rirss, set
to zero, the pulse sequence is executed and the resulting free induction decay
recorded. Then the nuclear spins are allowed to return to equilibigiigrthen
set toA;, the sampling interval iy, the sequence is repeated and a free
induction decay is recorded and stored separately from the first. Again the spins
are allowed to equilibraté, is set to A, the pulse sequence repeated and a free
induction decay recorded and stored. The whole process is repeated again for
= 3A;, 4A; and so on until sufficient data is recorded, typically 50 to 500
increments of;. Thus recording a two-dimensional data set involves repeating
a pulse sequence for increasing values ahd recording a free induction decay
as a function of; for each value df.

3.1.2 Interpretation of peaksin a two-dimensional spectrum
Within the general framework outlined in the previous section it is now

possible to interpret the appearance of a peak in a two-dimensional spectrum at
particular frequency co-ordinates.
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Suppose that in some unspecified two-dimensional spectrum a peak appears at
F1 = 20 Hz,F, = 90 Hz (spectruna above) The interpretation of this peak is

that a signal was present durigwhich evolved with a frequency of 20 Hz.
During the mixing time thisame signal was transferred in some way to another
signal which evolved at 90 Hz during

Likewise, if there is a peak &; = 20 Hz,F, = 20 Hz (spectrunb) the
interpretation is that there was a signal evolving at 20 Hz dtrindpich was
unaffected by the mixing period and continued to evolve at 20 Hz dtying
The processes by which these signals are transferred will be discussed in the
following sections.

Finally, consider the spectrum showncin Here there are two peaks, one at
F1 =20 Hz,F; = 90 Hz and one &; = 20 Hz,F, = 20 Hz. The interpretation
of this is that some signal was present dutinghich evolved at 20 Hz and that
during the mixing period part of it was transferred into another signal which
evolved at 90 Hz during. The other part remained unaffected and continued
to evolve at 20 Hz. On the basis of the previous discussion of COSY specitra,
the part that changes frequency during the mixing time is recognized as leading
to a cross-peak and the part that does not change frequency leads to a diagonal-
peak. This kind of interpretation is a very useful way of thinking about the
origin of peaks in a two-dimensional spectrum.

It is clear from the discussion in this section that the mixing time plays a
crucial role in forming the two-dimensional spectrum. In the absence of a
mixing time, the frequencies that evolve durtpgndt, would be the same and
only diagonal-peaks would appear in the spectrum. To obtain an interesting and
useful spectrum it is essential to arrange for some process during the mixing
time to transfer signals from one spin to another.

3.2 EXSY and NOESY spectra in detail

In this section the way in which the EXSY (EXchange SpectroscopY) sequenget i &
works will be examined; the pulse sequence is shown opposite. IS
experiment gives a spectrum in which a cross-peak at frequency co-oréinates
.- . . . . . The pulse sequence for EXSY
= O, F2 = & indicates that the spin resonatingdatis chemically exchanging (and NOESY). All puises have
with the spin resonating . 907 flip angles.
The pulse sequence for EXSY is shown opposite. The effect of the sequence

will be analysed for the case of two spins, 1 and 2, but without any coupling
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between them. The initial state, before the first pulse, is equilibrium
magnetization, represented ds, + l,; however, for simplicity only
magnetization from the first spin will be considered in the calculation.

The first 90° pulse (of phasg rotates the magnetization ontp —

L, Ot - 0= -1,

(the second arrow has no effect as it involves operators of spin 2). Next follows
evolution for timet;

-1, OB - OB - —cosQut, 1, +sinQut, 1,

again, the second arrow has no effect. The second 90° pulse turns the first term
onto thez-axis and leaves the second term unaffected

—cosQyt, 1,, Ot OB - —cosQyt, 1,
snQt, I, O - 0 snQypt, 1y,

Only thel,, term leads to cross-peaks by chemical exchange, so the other term
will be ignored (in an experiment this is achieved by appropriate coherence
pathway selection — see lecture 4). The effect of the first part of the sequence is
to generate, at the start of the mixing timg,, somez-magnetization on spin 1
whose size depends, via the cosine termfi;oand the frequency(2;, with

which the spin 1 evolves duririg The magnetization is said to be frequency
labelled.

During the mixing time,mix, Spin 1 may undergo chemical exchange with
spin 2. If it does this, it carries with it the frequency label that it acquired
duringt;. The extent to which this transfer takes place depends on the details of
the chemical kinetics; it will be assumed simply that dumpg a fractionf of
the spins of type 1 chemically exchange with spins of type 2. The effect of the
mixing process can then be written

~cosQ,t, I, OPP - ~(1- f)cosQyt, I, - f cosQ,t, 1,,
The final 90° pulse rotates ttignagnetization back onto tlyeaxis

- (1- f)cosQ,t, 1., OTFtH . OFFE - (1- f)cosQut, I,
— f cosQ,t, 1,, O - 0T - fcosQy, 1,

Although the magnetization started on spin 1, at the end of the sequence
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there is magnetization present on spin 2 — a process called magnetization
transfer. The analysis of the experiment is completed by allowingythedl,,
operators to evolve for tinte.

(1- f)cosQyt, 1, OBty - O Ftw -

(1— f)cosQlt2 cosQyt, I, —(1— f)siant2 cosQ.t, 1,
f cosQy, 1,, O Belr - Oy -

f cosQ,t,cosQt, I,, = f sinQ,t,cosQt, I,,

If it is assumed that themagnetization is detected duridthis is an arbitrary
choice, but a convenient one), the time domain signal has two terms:

(1— f)cosQlt2 cosQ,t, + f cosQ,t, cosQ,t,

The crucial thing is that the amplitude of the signal recorded duyimng
modulated by the evolution during. This can be seen more clearly by
imagining the Fourier transform, with respectfoof the above function. The
cos(ity) and cos@ty) terms transform to give absorption mode signals

centred at; and 2, respectively in thé, dimension; these are denote?

and A (the subscript indicates which spin, and the superscript which
dimension). The time domain function becomes

(1- £)A? cosQt, + fA? cosQ,t,

If a series of spectra recorded tasprogressively increases are inspected it
would be found that the ca3(t,) term causes a change in size of the peaks at
2 andQ; — this is the modulation referred to above.

Fourier transformation with respect tp gives peaks with an absorption
lineshape, but this time in tlkg dimension; an absorption mode signal2atin

F, is denoted AY. The time domain signal becomes, after Fourier
transformation in each dimension

(1- 1) AP AR + 1AL A
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Thus, the final two-dimensional spectrum is predicted to have two peaks. One
/\ /\ A Is at 1, F2) = (21, 1) — this is a diagonal peak and arises from those spins of
\/ \/ v, VR 7 type 1 which did not undergo chemical exchange during The second is at
ime

(F1, F2) = (21, ) — this is a cross peak which indicates that part of the
magnetization from spin 1 was transferred to spin 2 during the mixing time. It
Is this peak that contains the useful information. If the calculation were
repeated starting with magnetization on spin 2 it would be found that there are
similar peaks at®,, 2,) and (2, ).

The NOESY (Nuclear Overhauser Effect SpectrocopY) spectrum is recorded
using the same basic sequence. The only difference is that during the mixing
: time the cross-relaxation is responsible for the exchange of magnetization

o Treduency between different spins. Thus, a cross-peak indicates that two spins are
The Fourier transform of a EXPEriencing mutual cross-relaxation and hence are close in space.

‘ng‘gg”g exp(fff/i?f) ifS““C“gg Having completed the analysis it can now be seen how the EXCSY/NOESY

absorption mode Lorentzian ~Sequence is put together. First, the 9@7 — 90° sequence is used to generate

centred at frequency (2 frequency labelled-magnetization. Then, duringx, this magnetization is
allowed to migrate to other spins, carrying its label with it. Finally, the last

pulse renders themagnetization observable.

Fourier
transform

3.3 More about two-dimensional transforms

From the above analysis it was seen that the signal observed duragan
amplitude proportional to cag€t;); the amplitude of the signal observed during
t, depends on the evolution duritig For the first increment df (t; = 0), the
signal will be a maximum, the second increment will have size proportional to
cos(@14;), the third proportional to cag24;), the fourth to cosp;3A;) and so
on. This modulation of the amplitude of the observed signal bty thelution
is illustrated in the figure below.

In the figure the first column shows a series of free induction decays that
would be recorded for increasing values,adind the second column shows the
Fourier transforms of these signals. The final step in constructing the two-
dimensional spectrum is to Fourier transform the data along thenension.

This process is also illustrated in the figure. Each of the spectra shown in the
second column are represented as a series of data points, where each point
corresponds to a differet, frequency. The data point corresponding to a
particularF, frequency is selected from the spectratfor , t; = A, t1 = 24\

and so on for all thg values. Such a process results in a function, called an
interferogram, which has as the running variable.
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lllustration of how the modulation of a free induction decay by evolution during t gives rise to a peak in the
two-dimensional spectrum. In the left most column is shown a series of free induction decays that would be
recorded for successive values of t;; t; increases down the page. Note how the amplitude of these free
induction decays varies with 1, something that becomes even plainer when the time domain signals are
Fourier transformed, as shown in the second column. In practice, each of these F, spectra in column two
consist of a series of data points. The data point at the same frequency in each of these spectra is
extracted and assembled into an interferogram, in which the horizontal axis is the time #;. Several such
interferograms, labelled a to g, are shown in the third column. Note that as there were eight F, spectra in
column two corresponding to different t; values there are eight points in each interferogram. The F
frequencies at which the interferograms are taken are indicated on the lower spectrum of the second
column. Finally, a second Fourier transformation of these interferograms gives a series of F; spectra shown
in the right hand column. Note that in this column F; increases down the page, whereas in the first column
ty increase down the page. The final result is a two-dimensional spectrum containing a single peak.

Several interferograms, labellado g, computed for differerft, frequencies
are shown in the third column of the figure. The particklafrequency that
each interferogram corresponds to is indicated in the bottom spectrum of the
second column. The amplitude of the signal in each interferogram is different,
but in this case the modulation frequency is the same. The final stage in the
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Pulse sequence for the two-
dimensional COSY experiment

processing is to Fourier transform these interferograms to give the series of
spectra which are shown in the right most column of the figure. These spectra
haveF; running horizontally ané; running down the page. The modulation of
the time domain signal has been transformed into a single two-dimensional
peak. Note that the peak appears on several traces corresponding to diferent
frequencies because of the width of the linEin

The time domain data in thedimension can be manipulated by multiplying
by weighting functions or zero filling, just as with conventional free induction
decays.

3.4 Two-dimensional experiments using coherence transfer
through J-coupling

Perhaps the most important set of two-dimensional experiments are those which
transfer magnetization from one spin to another via the scalar coupling between
them. As was seen in section 2.3.3, this kind of transfer can be brought about
by the action of a pulse on an anti-phase state. In outline the basic process is

I, OEPEP 21, 1, OBEPTET. 21,1,

spinl spin 2

34.1 COSY

The pulse sequence for this experiment is shown opposite. It will be assumed
in the analysis that all of the pulses are applied aboutxives and for
simplicity the calculation will start with equilibrium magnetization only on spin

1. The effect of the first pulse is to genergtmagnetization, as has been
worked out previously many times

I, Ot - 0% -1,

This state then evolves for tinig first under the influence of the offset of spin
1 (that of spin 2 has no effect on spin 1 operators):

-1, OB - —cosQyt, I,, +sinQut, I,
Both terms on the right then evolve under the coupling

—cosQut, |, O T84l - —cosm,,t, cosQut, I, +sinmd,,t, cosQut, 21,1,
snQ.t, |, OPr & cosml,,t, sinQ.t, |, +sin7,t, sSnQ,t, 21, |

1y ! 2z
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That completes the evolution under Now all that remains is to consider the

effect of the final pulse, remembering that the effect of the pulse on both spins

needs to be computed. Taking the terms one by one:

~ cos7d,t, cosQ,t, |, O T3  OTFE - —cosr,t, cosQut, |, {1
sin7dp,t, cosQut, 21,1, O THE O TFF - —sin7d,ut, cosQut, 21,1, {2}

w

cos7d,t, sinQut, |, O - O - cosrd,t, SnQt, |, }
sin7dp,t, sinQut, 21, 1, OB - DT - —sin/d,t, SnQut, 21,1, {4

Terms {1} and {2} are unobservable. Term {3} corresponds to in-phase
magnetization of spin 1, aligned along thaxis. Thet; modulation of this

term depends on the offset of spin 1, so a diagonal peak centr@g @f)(is

predicted. Term {4} is the really interesting one. It shows that anti-phas
magnetization on spin 1]l is transferred to anti-phase magnetization on
spin 2, 24,l,y; this is an example of coherence transfer. Term {4} appears a
observable magnetization on spin 2, but it is modulatagdwith the offset of
spin 1, thus it gives rise to a cross-peak centre®@atX). It has been shown,

therefore, how cross- and diagonal-peaks arise in a COSY spectrum.

time
Fourier
transform

Some more consideration should be give to the form of the cross- and [\

multiplet in F,, and as it is along theaxis, the lineshape will be dispersive.

diagonal peaks. Consider again term {3}: it will give rise to an in-phase\“o/ frequency

The form of the modulation it; can be expanded, using the formula,

cosAsinB = {sin(B+ A) +sin(B - A)} to give

cosTd,t, SnQyt, = Hsin(Qu, + ) +sin(Qyt, - 7,,t)}

Two peaks inF; are expected a@; + 11, these are just the two lines of the

spin 1 doublet. In addition, since these are sine modulated they will have the
dispersion lineshape. Note that both components in the spin 1 multiplef
observed inF, are modulated in this way, so the appearance of the twoj,
dimensional multiplet can best be found by "multiplying together" the }
multiplets in the two dimensions, as shown opposite. In addition, all four

The Fourier transform of a
decaying sine function
sinQt exp(—t/T,) is a dispersion
mode Lorentzian centred at
frequency Q.

components of the diagonal-peak multiplet have the same sign, and have the

double dispersion lineshape illustrated below
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peak from a COSY spectrum.
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indicate the two-dimensional
double dispersion lineshape
illustrated below
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Schematic view of the cross-
peak multiplet from a COSY
spectrum. The circles are
supposed to indicate the two-
dimensional double absorption
lineshape illustrated below;
filled circles represent positive
intensity, open represent
negative intensity.

The double dispersion lineshape seen in pseudo 3D and as a contour plot; negative contours are indicated
by dashed lines.

Term {4} can be treated in the same way.Fjrwe know that this term gives
rise to an anti-phase absorption multiplet on spin 2. Using the relationship

snBsinA=2{-cofB+ A)+codB- A)} the modulation int; can be
expanded

snmd,t, SnQ.t = %{ - cos(Qlt1 + mlztl) + cos(Qlt1 - mlzt)}

Two peaks inFy, at & + 15, are expected; these are just the two lines of the
spin 1 doublet. Note that the two peaks have opposite signs — that is they are
anti-phase irf;. In addition, since these are cosine modulated we expect the
absorption lineshape (see section 3.2). The form of the cross-peak multiplet can
be predicted by "multiplying together" tig and F, multiplets, just as was
done for the diagonal-peak multiplet. The result is shown opposite. This
characteristic pattern of positive and negative peaks that constitutes the cross-
peak is know as an anti-phase square array.

The double absorption lineshape seen in pseudo 3D and as a contour plot.

COSY spectra are sometimes plotted in the absolute value mode, where all
the sign information is suppressed deliberately. Although such a display is
convenient, especially for routine applications, it is generally much more
desirable to retain the sign information. Spectra displayed in this way are said
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to be phase sensitive; more details of this are given in section 3.6.

As the coupling constant becomes comparable with the linewidth, the
positive and negative peaks in the cross-peak multiplet begin to overlap and
cancel one another out. This leads to an overall reduction in the intensity of the
cross-peak multiplet, and ultimately the cross-peak disappears into the noise in
the spectrum. The smallest coupling which gives rise to a cross-peak is thus set
by the linewidth and the signal-to-noise ratio of the spectrum.

3.4.2 Double-quantum filtered COSY (DQF COSY)

The conventional COSY experiment suffers from a disadvantage which arises
from the different phase properties of the cross- and diagonal-peak multiplets.
The components of a diagonal peak multiplet are all in-phase and so tend to
reinforce one another. In addition, the dispersive tails of these peaks spread far
into the spectrum. The result is a broad intense diagonal which can obscure
nearby cross-peaks. This effect is particularly troublesome when the coupling is
comparable with the linewidth as in such cases, as was described above,
cancellation of anti-phase components in the cross-peak multiplet reduces the
overall intensity of these multiplets.

This difficulty is neatly side-stepped by a modification called double I b Il \
guantum filtered COSY (DQF COSY). The pulse sequence is shown opposite.

Up to the second pulse the sequence is the same as COSY. However,it iSce sequence for DoF
arranged that only double-quantum coherence present during the (very StoMt) the delay between the

delay between the second and third pulses is ultimately allowed to contribuf! ftio Puises s usually just a

croseconds.
the spectrum. Hence the name, "double-quantum filtered", as all the observed
signals are filtered through double-quantum coherence. The final pulse is
needed to convert the double quantum coherence back into observable
magnetization. This double-quantum derived signal is selected by the use of
coherence pathway selection using phase cycling or field gradient pulses,

further details of which will be given in lecture 4.

In the analysis of the COSY experiment, it is seen that after the second 90°
pulse it is term {2} that contains double-quantum coherence; this can be
demonstrated explicitly by expanding this term in the raising and lowering
operators, as was done in section 2.5

20,0, =2x3(1, + 1, )x2(1, - 1,.)

-1 - 1(_
_2i(|1+|2+ |1—|2—)+2i( I1+|2—+|1—|2+)

This term contains both double- and zero-quantum coherence. The pure
double-quantum part is the term in the first bracket on the right; this term can be
re-expressed in Cartesian operators:
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a1, -1,1,) =2—1i[(llx 11 (PRSI EX (ST (% ‘”zv)]

%[2|1x|2y + 2|ly|2x]

The effect of the last 9QX pulse on the double quantum part of term {2} is
thus

- 3sin7,t, cosQut, (21,1, + 21,1, ) O H - 0t
—1sin7d,t, cosQ,t, (21,15, + 21,15,

The first term on the right is anti-phase magnetization of spin 1 aligned along
the x-axis; this gives rise to a diagonal-peak multiplet. The second term is anti-
phase magnetization of spin 2, again aligned akorifpis will give rise to a
cross-peak multiplet. Both of these terms have the same modulatign in
which can be shown, by a similar analysis to that used above, to lead to an anti-
phase multiplet ir-;. As these peaks all have the same lineshape the overall
phase of the spectrum can be adjusted so that they are all in absorption; see
section 3.6 for further details. In contrast to the case of a simple COSY
experiment both the diagonal- and cross-peak multiplets are in anti-phase in
both dimensions, thus avoiding the strong in-phase diagonal peaks found in the
simple experiment. The DQF COSY experiment is the method of choice for
tracing out coupling networks in a molecule.

3.4.3 Heteronuclear correlation experiments

One particularly useful experiment is to record a two-dimensional spectrum in
which the co-ordinate of a peak in one dimension is the chemical shift of one
type of nucleus (e.g. proton) and the co-ordinate in the other dimension is the
chemical shift of another nucleus (e.g. carbon-13) which is coupled to the first
nucleus. Such spectra are often called shift correlation maps or shift correlation
spectra.

The one-bond coupling between a carbon-13 and the proton directly attached
to it is relatively constant (around 150 Hz), and much larger than any of the
long-range carbon-13 proton couplings. By utilizing this large difference
experiments can be devised which give maps of carbon-13&hifis shifts of
directly attached protons. Such spectra are very useful as aids to assignment;
for example, if the proton spectrum has already been assigned, simply recording
a carbon-13 proton correlation experiment will give the assignment of all the
protonated carbons.

Only one kind of nuclear species can be observed at a time, so there is a
choice as to whether to observe carbon-13 or proton when recording a shift
correlation spectrum. For two reasons, it is very advantageous from the
sensitivity point of view to record protons. First, the proton magnetization is
larger than that of carbon-13 because there is a larger separation between the
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spin energy levels giving, by the Boltzmann distribution, a greater population
difference. Second, a given magnetization induces a larger voltage in the coil
the higher the NMR frequency becomes.

Trying to record a carbon-13 proton shift correlation spectrum by proton
observation has one serious difficulty. Carbon-13 has a natural abundance of
only 1%, thus 99% of the molecules in the sample do not have any carbon-13 in
them and so will not give signals that can be used to correlate carbon-13 and
proton. The 1% of molecules with carbon-13 will give a perfectly satisfactory
spectrum, but the signals from these resonances will be swamped by the much
stronger signals from non-carbon-13 containing molecules. However, these
unwanted signals can be suppressed using coherence selection in a way which
will be described below and which will be further elaborated in lecture 4.

3.4.3.1 Heteronuclear multiple-quantum correlation (HMQC)

The pulse sequence for this popular experiment is given opposite. Thia |] 3
sequence will be analysed for a coupled carbon-13 proton pair, where spin 1! "
will be the carbon-13 and spin 2 the proton. e | - |

The analysis will start with equilibrium magnetization on spinil, The
whole analysis can be greatly simplified by noting that the 180° pulse is exail iecamos repesont 30°
midway between the first 90° pulse and the start of data acquisition. Asppiggs and open rectangles
been shown in section 2.4, such a sequence forms a spin echo and SEABE sece 12y
evolution of the offset of spin 1 over the entire periad+(24) is refocused.
Thus the evolution of the offset of spin 1 can simply be ignored for the purposes

of the calculation.

At the end of the dela the state of the system is simply due to evolution of
the term 4y under the influence of the scalar coupling:

—cosrd,A 1y, +sinmd,A 20 1,

It will be assumed thdt = 1/(2);2), so only the anti-phase term is present.
The second 90° pulse is applied to carbon-13 (spin 2) only

21,1, O & =211

2y

This pulse generates a mixture of heteronuclear double- and zero-quantum
coherence, which then evolves duriag In principle this term evolves under

the influence of the offsets of spins 1 and 2 and the coupling between them.
However, it has already been noted that the offset of spin 1 is refocused by the
centrally placed 180° pulse, so it is not necessary to consider evolution due to
this term. In addition, it can be shown that multiple-quantum coherence
involving spins i and j does not evolve under the influence of the coupgiing,
between these two spins (see appendix x.x). As a result of these two
simplifications, the only evolution that needs to be considered is that due to the
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Schematic HMQC spectrum for
two coupled spins.

offset of spin 2 (the carbon-13).
=21, 1,, OB & —cosQ,t, 21,1, +sinQ,t, 21,1,

The second 90° pulse to spin 2 (carbon-13) regenerates the first term on the
right into spin 1 (proton) observable magnetization; the other remains
unobservable

—cosQ,t, 21,1, O - —cosQ,t, 21,15,

This term then evolves under the coupling, again it is assumed that
A= 1/(212)

~cosQ,t, 21,1, OB - —cos,t, 1y,

This is a very nice result; iR, there will be an in-phase doublet centred at the
offset of spin 1 (proton) and these two peaks will havE;arp-ordinate simply
determined by the offset of spin 2 (carbon-13); the peaks will be in absorption.
A schematic spectrum is shown opposite.

The problem of how to suppress the very strong signals from protons not
coupled to any carbon-13 nuclei now has to be addressed. From the point of
view of these protons the carbon-13 pulses might as well not even be there, and
the pulse sequence looks like a simple spin echo. This insensitivity to the
carbon-13 pulses is the key to suppressing the unwanted signals. Suppose that
the phase of the first carbon-13 90° pulse is altered &dm —x. Working
through the above calculation it is found that the wanted signal from the protons
coupled to carbon-13 changes sign i.e. the observed spectrum will be inverted.
In contrast the signal from a proton not coupled to carbon-13 will be unaffected
by this change. Thus, for eaghincrement the free induction decay is recorded
twice: once with the first carbon-13 90° pulse set to pkased once with it set
to phase x The two free induction decays are then subtracted in the computer
memory thus cancelling the unwanted signals. This is an example of a very
simple phase cycle, more details of which are given in lecture 4.

In the case of carbon-13 and proton the one bond coupling is so much larger
than any of the long range couplings that a choia® ©f1/(2Jgne hong) does not
give any correlations other than those through the one-bond coupling. There is
simply insufficient time for the long-range couplings to become anti-phase.
However, if A is set to a much longer value (30 to 60 ms), long-range
correlations will be seen. Such spectra are very useful in assigning the
resonances due to quaternary carbon-13 atoms. The experiment is often called
HMBC (heteronuclear multiple-bond correlation).

Now that the analysis has been completed it can be seen what the function of
various elements in the pulse sequence is. The first pulse and delay generate
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magnetization on proton which is anti-phase with respect to the coupling to
carbon-13. The carbon-13 90° pulse turns this into multiple quantum
coherence. This forms a filter through which magnetization not bound to
carbon-13 cannot pass and it is the basis of discrimination between signals from
protons bound and not bound to carbon-13. The second carbon-13 pulse returns
the multiple quantum coherence to observable anti-phase magnetization on
proton. Finally, the second del&yturns the anti-phase state into an in-phase
state. The centrally placed proton 180° pulse refocuses the proton shift
evolution for both the delaysandt;.

3.4.3.2 Heteronuclear single-quantum correlation (HSQC)

This pulse sequence results in a spectrum identical to that found for HMQC.
Despite the pulse sequence being a little more complex than that for HMQC,
HSQC has certain advantages for recording the spectra of large molecules, such
a proteins. The HSQC pulse sequence is often embedded in much more
complex sequences which are used to record two- and three-dimensional spectra
of carbon-13 and nitrogen-15 labelled proteins.

N>
N>
NI>

y
N A TED
Bc— l : ! | \

el B

9]

The pulse sequence for HSQC. Filled rectangles represent 90° pulses and open rectangles represent 180°

pulses. The delay A is set to 1/(2J12); all pulses have phase x unless otherwise indicated.

If this sequence were to be analysed by considering each delay and pulse in turn
the resulting calculation would be far too complex to be useful. A more
intelligent approach is needed where simplifications are used, for example by
recognizing the presence of spin echoes who refocus offsets or couplings. Also,
it is often the case that attention can be focused a particular terms, as these are
the ones which will ultimately lead to observable signals. This kind of
"intelligent" analysis will be illustrated here.

PeriodsA andC are spin echoes in which 180° pulses are applied to both
spins; it therefore follows that the offsets of spins 1 and 2 will be refocused, but
the coupling between them will evolve throughout the entire period. As the
total delay in the spin echo is 13(2 the result will be the complete conversion
of in-phase into anti-phase magnetization.

PeriodB is a spin echo in which a 180° pulse is applied only to spin 1. Thus,
the offset of spin 1 is refocused, as is the coupling between spins 1 and 2; only
the offset of spin 2 affects the evolution.

With these simplifications the analysis is easy. The first pulse genelgtes —
; during periodA this then becomes H2,,. The 90°)) pulse to spin 1 turns
this to 24,1, and the 90%) pulse to spin 2 turns it to K. The evolution
during period is simply under the offset of spin 2
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N>
N>

Pulse sequence for multiple-

quantum spectroscopy.

=211, OBME - —cosQ,t, 21,1,, +sinQ,t; 21,1,

The next two 90° pulses transfer the first term to spin 1; the second term is
rotated into multiple quantum and is not observed

~cosQ,t, 21,1, +sinQ,t, 21,1, OFEE
—cosQ,t, 21, 1,, —sinQ,t, 21, I

1y " 2x

The first term on the right evolves during peri@dnto in-phase magnetization
(the evolution of offsets is refocused). So the final observable term is
cosQ,t, 1,,. The resulting spectrum is therefore an in-phase doublEt,in

centred at the offset of spin 1, and these peaks will both have the same
frequency inF1, namely the offset of spin 2. The spectrum looks just like the
HMQC spectrum.

3.5 Multiple-quantum spectroscopy

A key feature of two-dimensional NMR experiments is that no direct
observations are made duritg it is thus possible to detect, indirectly, the
evolution of unobservable coherences. An example of the use of this feature is
in the indirect detection of multiple-quantum spectra. A typical pulse sequence
for such an experiment is shown opposite

For a two-spin system the optimum valuefads 1/(2);,). The sequence can
be dissected as follows. The initial 90AR — 180° -A/2 — sequence is a spin
echo which, at time), refocuses any evolution of offsets but allows the
coupling to evolve and generate anti-phase magnetization. This anti-phase
magnetization is turned into multiple-quantum coherence by the second 90°
pulse. After evolving for timet; the multiple quantum is returned into
observable (anti-phase) magnetization by the final 90° pulse. Thus the first
three pulses form the preparation period and the last pulse is the mixing period.

3.5.1 Double-quantum spectrum for athree-spin system

The sequence will be analysed for a system of three spins. A complete
analysis would be rather lengthy, so attention will be focused on certain terms
as above, as many simplifying assumptions as possible will be made about the
sequence.

The starting point will be equilibrium magnetization on spih,1,after the
spin echo the magnetization has evolved due to the coupling between spin 1 and
spin 2, and the coupling between spin 1 and spin 3 (the 180° pulse causes an
overall sign change (see section 2.4.1) but this has no real effect here so it will
be ignored)
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— 1, OB - —cosm,A 1, + sivd,A 21,1,
0Py - —cosm,A cogdLA |y, + simdA cosl,A 21,1, [3.1]
+cosrd A sivd,A 21,1, + simd A simd,A 4l L L,

Of these four terms, all but the first are turned into multiple-quantum by the
second 90° pulse. For example, the second term becomes a mixture of double
and zero quantum between spins 1 and 3

sn7 A cosrd,A 21, 1, O Tt - —sinr A cosmd,A 21, |

3y

It will be assumed that appropriate coherence pathway selection (see section
x.X) has been used so that ultimately only the double-quantum part contributes
to the spectrum. This part is

[~ sin7d,.A cosd,A ][%(zhxlsy + 2|1y|3X)] = B,,DQ™

The term in square brackets just gives the overall intensity, but does not affect
the frequencies of the peaks in the two-dimensional spectrum as it does not
depend on; or ty; this intensity term is denote®l; for brevity. The operators

in the curly brackets represent a pure double quantum state which can be

denoted DQ(yB); the superscript (13) indicates that the double quantum is
between spins 1 and 3 (see section 2.9).

As is shown in section 2.9, such a double-quantum term evolves under the
offset according to

B,DQUY [ P ey Fitty
B,,codQ, +Q,)t, DQ'¥ - B, sin(Q, +Q,)t, DQ

where DQ' = %(lexl3X —2|1y|3y). This evolution is analogous to that of a

single spin wherg rotates towardsx-
As is also shown in section 2.92Q(y13) and DQ™ do not evolve under the

coupling between spins 1 and 3, but they do evolve under the sum of the
couplings between these two and all other spins; in this case this is simply
(J12+J23). Taking each term in turn
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Schematic two-dimensional

double quantum  spectrum
showing the multiplets arising
from evolution of double-
quantum coherence between
spins 1 and 3. If has been
assumed that Ji» > Ji3 > Jos.
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Schematic spectrum showing
the relationship between the
single- and double-quantum
frequencies for coupled spins.

B,,coQ, +Q, )t, DQU O PPyt Hty -

B,codQ, + Q. )t, cosr(J,, + I )t, DQY

= BcodQ, + Q,)t, sin(J,, + I, )t, 21,,DQF
- B, sin(Q, + Q,)t, DQY O PP 3147

— B, sin(Q, +Q,)t, cosr(J,, + I, )t, QP

- B, sin(Q, + Q,)t, snn(J, + I )t 21,,0Q%

Terms such agl,,DQ{ and 21,,DQ{" can be thought of as double-quantum

coherence which has become "anti-phase" with respect to the coupling to spin
2; such terms are directly analogous to single-quantum anti-phase
magnetization.

Of all the terms present at the endtgfonly DQ(VB) is rendered observable
by the final pulse

codQ, +Q,)t, cosr(3,, + 3,,)t,B,,0QI 0 Aty Tr
COin + Qs)tl Cosn(‘JlZ + ‘]23)tlBlS[2| 1x I 3z + 2' 1zI 3x]

The calculation predicts that two two-dimensional multiplets appear in the
spectrum. Both have the same structurié;jmamely an in—phase doublet, split

by (J12 + J23) and centred at@; + (2); this is analogous to a normal multiplet.

In F, one two-dimensional multiplet is centred at the offset of spig2;,land

one at the offset of spin &s; both multiplets are anti-phase with respect to the
couplingJiz. Finally, the overall amplitud®;s, depends on the deldyand all

the couplings in the system. The schematic spectrum is shown opposite.
Similar multiplet structures are seen for the double-quantum between spins 1 &
2 and spins 2 & 3.

3.5.2 Interpretation of double-quantum spectra

The double-quantum spectrum shows the relationship between the frequencies
of the lines in the double quantum spectrum and those in the (conventional)
single-quantum spectrum. If two two-dimensional multiplets appeé& at4)

= (Qa + Op, Q4) and @ + g, ) the implication is that the two spins A and

B are coupled, as it is only if there is a coupling present that double-quantum
coherence between the two spins can be generated (e.g. in the previous section,
if J13 = O the termB;3, goes to zero). The fact that the two two-dimensional
multiplets share a commds, frequency and that this frequency is the sum of

the twoF; frequencies constitute a double check as to whether or not the peaks
indicate that the spins are coupled.

Double quantum spectra give very similar information to that obtained from
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COSY i.e. the identification of coupled spins. Each method has particular
advantages and disadvantages:

(1) In COSY the cross-peak multiplet is anti-phase in both dimensions,
whereas in a double-quantum spectrum the multiplet is only anti-ph&se in
This may lead to stronger peaks in the double-quantum spectrum due to less
cancellation. However, during the two delafsmagnetization is lost by
relaxation, resulting in reduced peak intensities in the double-quantum
spectrum.

(2) The value of the delaf in the double-quantum experiment affects the
amount of multiple-quantum generated and hence the intensity in the spectrum.
All of the couplings present in the spin system affect the intensity and as
couplings cover a wide range, no single optimum valuédfcan be given. An
unfortunate choice fof will result in low intensity, and it is then possible that
correlations will be missed. No such problems occur with COSY.

(3) There are no diagonal-peak multiplets in a double-quantum spectrum, so
that correlations between spins with similar offsets are relatively easy to locate.
In contrast, in a COSY the cross-peaks from such a pair of spins could be
obscured by the diagonal.

(4) In more complex spin systems the interpretation of a COSY remains
unambiguous, but the double-quantum spectrum may show a peak;veith
ordinate Qa + Qg) andF, co-ordinate, (or g) even when spins A and B are

not coupled. Such remote peaks, as they are called, appear when spins A and B
are both coupled to a third spin. There are various tests that can differentiate
these remote from the more useful direct peaks, but these require additional
experiments. The form of these remote peaks in considered in the next section.

On the whole, COSY is regarded as a more reliable and simple experiment,
although double-quantum spectroscopy is used in some special circumstances.

3.5.3 Remote peaksin double-quantum spectra

The origin of remote peaks can be illustrated by returning to the calculation of
section 3.5.1. and focusing on the doubly anti-phase term which is present at the
end of the spin echo (the fourth term in Eqn. [3.1])

Sn7LA SnTdLA Al l 0,

The 90° pulse rotates this into multiple-quantum

Sn7dA Sn7d,A 4l 1,1, O BT L snm,a snm,a 41,0,

1z7 2y " 3y

The pure double-quantum part of this term is

3-19



J13

| Q3
l ' Joz
‘v A' decreasing
J3=0

2 /2213)(

lllustration of how the intensity
of an anti-phase multiplet
decreases as the coupling
which it is in anti-phase with
respect to decreases. The in-
phase multiplet is shown at the
top, and below are three
versions of the anti-phase
multiplet  for  successively
decreasing values of Jo3.

—2SIN7,A sin7d,A (4|lz|2x|3x _4Ilz|2y|3y) = st,lzllzDQ(xzs)

In words, what has been generated in double-quantum between spins 2 and 3,
anti-phase with respect to spin 1. The key thing is that no coupling between
spins 2 and 3 is required for the generation of this term — the intensity just
depends oy, andJ;3; all that is required is that both spins 2 and 3 have a
coupling to the third spin, spin 1.

During t; this term evolves under the influence of the offsets and the
couplings. Only two terms ultimately lead to observable signals; at the énd of
these two terms are

= COS(Q2 + Qs)t1 COS]'I(J12 + ‘J13)t1 2] 1ZDQ>(<23)
Baa COS(QZ + §23)t1 Sinn(J12 + Jls)tl DQ)(/23)

and after the final 90° pulse the observable parts are

By cos(Q2 + (23)tl cosn(.]12 + Jlg)tl4lly| .
B23,1 COS(QZ + Q3)tl sinn(le + ‘J13)t1 (2| 2x| 3z +21 2zI 3x)

The first term results in a multiplet appearingtin F, and at 2, + () in F;.

The multiplet is doubly anti-phase (with respect to the couplings to spins 2 and
3) inFy; in F1 it is in-phase with respect to the sum of the coupliigandJ;s.

This multiplet is a remote peak, as its frequency coordinates do not conform to
the simple pattern described in section 3.5.2. It is distinguished from direct
peaks not only by its frequency coordinates, but also by having a different
lineshape inF, to direct peaks and by being doubly anti-phase in that
dimension.

The second and third terms are anti-phase with respect to the coupling
between spins 2 and 3, and if this coupling is zero there will be cancellation
within the multiplet and no signals will be observed. This is despite the fact
that multiple-quantum coherence between these two spins has been generated.

3.6 Lineshapes and frequency discrimination

This is a somewhat involved topic which will only be possible to cover in
outline in this lecture.
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3.6.1 One-dimensional spectra

Suppose that a 9@)(pulse is applied to equilibrium magnetization resulting i modern spectrometers use
the generation of pure-magnetization which then precesses in the transvefggeinod know as duadrature
) €ection, which in effect means
plane with frequency2. NMR spectrometers are set up to detecixthendy- that both the x- and y-
components of this magnetization. If it is assumed (arbitrarily) that thE o ol e
components decay exponentially with time constBnthe resulting signals, simultaneously.

S(t) andS,(t), from the two channels of the detector can be written
S.(t) = ycosQtexp(-t/T,) S,(t) = ysinQtexp(-t/T,)

whereyis a factor which gives the absolute intensity of the signal.

Usually, these two components are combined in the computer to give a
complex time-domain signait)

S(t) = S.(t) +is, (1)

= y(cosQt +isinQt) exp(-t/T,) [3.2]
T
= yexp(iQt) exp(- t/T,) 2L o
The Fourier transform &) is also a complex functio{¢):
<
Sw) = FT[S(t)]
= { Alw) +iD(w)}
A_bsorpt_ion (above) a_nd
whereA(w) andD(«) are the absorption and dispersion Lorentzian lineshape ,'Sergirz;)c;n& (be|0(\;\/e)mha(:jrentz|zr;
frequency Q.
1 w-Q)T.
A = D(e) = L=

(w-Q)*TZ +1 (w-Q)*T7 +1

These lineshapes are illustrated opposite. For NMR it is usual to display the
spectrum with the absorption mode lineshape and in this case this corresponds
to displaying the real part &a).

3.6.1.1 Phase
Due to instrumental factors it is almost never the case that the real and
imaginary parts of§t) correspond exactly to the andy-components of the

magnetization. Mathematically, this is expressed by multiplying the ideal
function by an instrumental phase facty;
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qt) = yexp(i (qnstr)exp(iQt)exp(—t/Tz)

The real and imaginary partsf) are

R S(t)] = y(cos@, cosQt -sing,,, sinQt)exp(-t/T,)
Im S(t)] = y(cosqz(ngr SnQt +sing,, coth) exp(— t/Tz)

Clearly, these do not correspond to #keandy-components of the ideal time-
domain function.

The Fourier transform @&(t) carries forward the phase term

Sw) = yexp(i B ){ Alw) +iD(w)}

The real and imaginary parts ${fc) are no longer the absorption and dispersion
signals:

R S(@)] = y(coshe, Alw) - Singg, D(w)
1M S(@)] = y(cosgy, D(w) + sin g, Alw)

Thus, displaying the real part §fc) will not give the required absorption mode
spectrum; rather, the spectrum will show lines which have a mixture of
absorption and dispersion lineshapes.

Restoring the pure absorption lineshape is sinfl® is multiplied, in the
computer, by a phase correction factay;:

() exp(i @) = ¥ XPi trr ) €XP(i s, ){ Alw) +iD(w)}
= Y xXP(i (R + Brsr ) { Al) +iD(w)}

By choosing@or such that @or + @) = 0 (.€. @or = — @har) the phase terms
disappear and the real part of the spectrum will have the required absorption
lineshape. In practice, the value of the phase correction is set "by eye" until the
spectrum "looks phased”. NMR processing software also allows for an
additional phase correction which depends on frequency; such a correction is
needed to compensate for, amongst other things, imperfections in
radiofrequency pulses.

3.6.1.2 Phaseisarbitrary

Suppose that the phase of the 90° pulse is changed yramx. The
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magnetization now starts along and precesses towargsassuming that the
instrumental phase is zero, the output of the two channels of the detector are

S,(t) = ysinQtexp(-t/T,) S, (t) = -y cosQtexp(-t/T,)
The complex time-domain signal can then be written

S(t) = s,(t) +is, (1)
= y(sinQt —i coth)exp(— t/Tz)
y(~i)(cosQt +isinQt) exp(-t/T,)
= y(~i) expliat) exp(~ t/T,)
= yexp(i wexp)exp(iQt)exp(—t/Tz)

Where @, the "experimental® phase, is m2 (recall that
exp(ig) = cogp+ i sing so that exp(—v2) = —i).

It is clear from the form of(t) that this phase introduced by altering the
experiment (in this case, by altering the phase of the pulse) takes exactly the
same form as the instrumental phase error. It can, therefore, be corrected by
applying a phase correction so as to return the real part of the spectrum to the
absorption mode lineshape. In this case the phase correction woull be

The Fourier transform of the original signal is

S(w) = p(-i){ Alw) +iD(w)}
RdS(w)] = yD(w)  IMSw)] = -yAlw)

Thus the real part shows the dispersion mode lineshape, and the imaginary part
shows the absorption lineshape. The 90° phase shift simply swaps over the real
and imaginary parts.

3.6.1.3 Relative phaseisimportant

The conclusion from the previous two sections is that the lineshape seen in the
spectrum is under the control of the spectroscopist. It does not matter, for
example, whether the pulse sequence results in magnetization appearing along
thex- ory- axis (or anywhere in between, for that matter). It is always possible
to phase correct the spectrum afterwards to achieve the desired lineshape.
However, if an experiment leads to magnetization from different processes
or spins appearing along different axes, there is no single phase correction
which will put the whole spectrum in the absorption mode. This is the case in
the COSY spectrum (section 3.4.1). The terms leading to diagonal-peaks
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Spectrum a has peaks at
positive and negative
frequencies and is frequency
discriminated. Spectrum b
results from a cosine
modulated time-domain data
set; each peak appears at both

positive and negative
frequency, regardless of
whether its real offset is

positive or negative. Spectrum
c results from a sine modulated
data set; like b each peak
appears twice, but with the
added complication that one
peak is inverted. Spectra b and
¢ lack frequency discrimination
and are quite uninterpretable as
a result.

appear along thg-axis, whereas those leading to cross-peaks appear yalong
Either can be phased to absorption, but if one is in absorption, one will be in
dispersion; the two signals are fundamentally 90° out of phase with one another.

3.6.1.4 Frequency discrimination

Suppose that a particular spectrometer is only capable of recording one, say the
x-, component of the precessing magnetization. The time domain signal will
then just have a real part (compare Eqn. [3.2] in section 3.6.1)

qt) = ycothexp(— t/TZ)

Using the identitycosd = %(exp(i 0) +exp(-i 6?)) this can be written

S(t) = %y[exp(iQt) + exp(— iQt)] exp(— t/TZ)
=1 yexpiQt) ex;ﬁ—t/Tz) +1y exp 4Qt) e>(|& t/T2)

The Fourier transform of the first term gives, in the rea part, an absorption
mode peak at w= +£2; the transform of the second term gives the same but at w
=-Q.

Re[S(w)] =3)A, +3)A

where A, represents an absorption mode Lorentzian line at w = +Q and A_
represents the same at w = —Q; likewise, D, andD_ represent dispersion mode
peaks at +Q2 and -, respectively.

This spectrum is said to lack frequency discrimination, in the sense that it
does not matter if the magnetization went round@tof -2, the spectrum still
shows peaks at bothrand 2. This is in contrast to the case where both the
x- andy-components are measured where one peak appears at either positive or
negativewdepending on the sign 4.

The lack of frequency discrimination is associated with the signal being
modulated by a cosine wave, which has the property tha@os(cos(<2t), as
opposed to a complex exponential, ekfiwhich is sensitive to the sign &.

In one-dimensional spectroscopy it is virtually always possible to arrange for
the signal to have this desirable complex phase modulation, but in the case of
two-dimensional spectra it is almost always the case that the signal modulation
in thet; dimension is of the form ca&{;) and so such spectra are not naturally
frequency discriminated in thg dimension.

Suppose now that only thecomponent of the precessing magnetization
could be detected. The time domain signal will then be (compare Egn. [3.2] in
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section 3.6.1)

qt) = iysithexp(—t/Tz)

Using the identitysind = z—li(exp(i 0) —exp(-i 6)) this can be written

S(t) = %y[exp(iQt) —exp(— iQt)] exp(— t/TZ)
=1yexpiQt) expﬁ—t/Tz) -1y exp 4Qt) e>(|c-r t/T2)

and so

Re[S(w)] =3)A, -3 )A

This spectrum again shows two peaks, @ fut the two peaks have opposite
signs; this is associated with the signal being modulated by a sine wave, which
has the property that sin@t) = — sin@). If the sign of@ changes the two
peaks swap over, but there are still two peaks. In a sense the spectrum is
frequency discriminated, as positive and negative frequencies can be
distinguished, but in practice in a spectrum with many lines with a range of
positive and negative offsets the resulting set of possibly cancelling peaks
would be impossible to sort out satisfactorily.

3.6.2 Two-dimensional spectra

3.6.2.1 Phase and amplitude modulation

There are two basic types of time-domain signal that are found in two-
dimensional experiments. The first is phase modulation, in which the evolution
in t; is encoded as a phase, mathematically as a complex exponential

S(tl’tz)phase = yexp(intl)exp(— tl/Tz(l))eXp(intz)eXp(_ t2/1-2(2))

where ; and Q, are the modulation frequenciestinandt, respectively, and
T, and T, are the decay time constantsg;iandt, respectively.

The second type is amplitude modulation, in which the evolution is
encoded as an amplitudes. mathematically as sine or cosine
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St), = ycos(Qltl)exp(—tl/TZ(l))exp(iQth)exp(—tz/Tz(z))
S(t)s = ySin(Qltl)eXp(_ tl/Tz(l))eXp(iQZtZ)EXp(_ t2 /T2(2))

Generally, two-dimensional experiments produce amplitude modulation, indeed
all of the experiments analysed in this chapter have produced either sine or
cosine modulated data.  Therefore most two-dimensional spectra are
fundamentally not frequency discriminated in fhedimension. As explained
above for one-dimensional spectra, the resulting confusion in the spectrum is
not acceptable and steps have to be taken to introduce frequency discrimination.

It will turn out that the key to obtaining frequency discrimination is the
ability to record, in separate experiments, both sine and cosine modulated data
sets. This can be achieved by simply altering the phase of the pulses in the
sequence.

For example, consider the EXSY sequence analysed in section 3.2 . The
observable signal, at tinte= 0, can be written

(1— f)cosQltl I, +fcosQpt, I,

If, however, the first pulse in the sequence is changed in phas« fimgnthe
corresponding signal will be

~(1-f)snQy, I, - fsinQt, 1,

i.e. the modulation has changed from the form of a cosine to sine. In COSY
and DQF COSY a similar change can be brought about by altering the phase of
the first 90° pulse. In fact there is a general procedure for effecting this change,
the details of which are given in lecture 4.

3.6.2.2 Two-dimensional lineshapes

The spectra resulting from two-dimensional Fourier transformation of phase
and amplitude modulated data sets can be determined by using the following
Fourier pair

FT[exp(iQt) exp(— t/Tz)] = { Alw) + iD(a))}

where A andD are the dispersion Lorentzian lineshapes described in section
3.6.1

Phase modulation
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For the phase modulated data set the transform with respggives
S(tl,a)z)phase = yexp(intl)exp(—tl/Tz(l))[ NG +iD£2’]

where A? indicates an absorption mode line in fhedimension atw = +Q2,

and with linewidth set by, ; similarly D'? is the corresponding dispersion
line.

The second transform with respectitgives

h.0),.. =R D [0 +i0f

where A? indicates an absorption mode line in fhedimension atw = +Q;

and with linewidth set byr,”; similarly DY is the corresponding dispersion
line.

The real part of the resulting two-dimensional spectrum is

Re[s(wl’wz)phase] = V(Ail) AEZ) _ Dil) DJ(,Z))

This is a single line ata§,wp) = (+1,+,) with the phase-twist lineshape,
illustrated below.

Pseudo 3D view and contour plot of the phase-twist lineshape.

The phase-twist lineshape is an inextricable mixture of absorption and
dispersion; it is a superposition of the double absorption and double dispersion
lineshape (illustrated in section 3.4.1). No phase correction will restore it to
pure absorption mode. Generally the phase twist is not a very desirable
lineshape as it has both positive and negative parts, and the dispersion
component only dies off slowly.
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Cosine amplitude modulation

For the cosine modulated data set the transform with respecfives

S(tl'wZ)c = yeod @yt ) exp(- tl/Tz(l))[ AP "‘iDiz)]

The cosine is then rewritten in terms of complex exponentials to give

St.w), =1y{explian,) + exp(-i.t, )| exp(-t,/T,2)] A? +iD?

The second transform with respectitgives

S(a)l,wz)c :%V[{ AL +iD£1)} +{A£1) +iD£1)}][A£2) +iD£2)]

where AY indicates an absorption mode line in fhedimension ata = —2;
and with linewidth set byl 2(1); similarly DY is the corresponding dispersion
line.

Thereal part of the resulting two-dimensional spectrum is

Re[ . ] =1y(AP AP - DOD?) +1y(AY AP - DPD?)

This is a two lines, both with the phase-twist lineshape; one is located at
(+2,,+,) and the other is at (,+(,). As expected for a data set which is
cosine modulated ifh the spectrum is symmetrical abaat= 0.

A spectrum with a pure absorption mode lineshape can be obtained by
discarding the imaginary part of the time domain data immediately after the

transform with respect ; i.e. taking the real part oS(tl,wz)c

S(tl,wz)?e = Re{S(tl,a)z)C]

= ycos(Qltl) exp(— tl/TZ(l) ) Aiz)

Following through the same procedure as above:

st @) = %y[exp(intl) +exp(- intl)] exp(— t,/T," ) Al?
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S w)” =1y[{ AV +iD®} +{AD +iDW}] AP

The real part of the resulting two-dimensional spectrum is

R S(e, ;)| = 1A AZ + 3 )al" A2

This is two lines, located at (,+,) and (<2,,+£), but in contrast to the
above both have the double absorption lineshape. There is still lack of
frequency discrimination, but the undesirable phase-twist lineshape has been
avoided.

Sine amplitude modulation

For the sine modulated data set the transform with respgdites

S(tl’wZ)s = ysin(Qt,)exp(-t,/T,” )[ A? +iD{

The cosine is then rewritten in terms of complex exponentials to give

St ), = 3 vemlio) - ep(-io.t, )| exp(-t, /T2 A? +iD?]

The second transform with respectitgives

Sw,w,). =2—1iy[{ AY +iD} -{ Al +inl)}][A£2) +iD?]

The imaginary part of the resulting two-dimensional spectrum is

ims{e,@,),| = -1y(AYA? - DPDP) + 1 (A AP - DUD?)

This is two lines, both with the phase-twist lineshape but with opposite signs;
one is located at @1,+(2,) and the other is at (,+(). As expected for a

data set which is sine modulatedirhe spectrum is anti-symmetric abawyt=
0.

As before, a spectrum with a pure absorption mode lineshape can be
obtained by discarding the imaginary part of the time domain data immediately

after the transform with respectttoi.e. taking the real part oS(tl,a)z)S
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lllustration of the way in which
the SHR method achieves
frequency discrimination by
combining cosine and sine
modulated spectra.

S(tl,a)z)zee = Re[S(tl,a)z)s]

= ysin(Qltl)exp(— tl/Tz(l))Aiz)

Following through the same procedure as above:

St @) =% y[exp(intl) —exp(- intl)] exp(— t,/T" )Aﬁz)

) =2y {AY +iDP} -{ A" +inl)}]A£2)

The imaginary part of the resulting two-dimensional spectrum is

M S{aa, ;)] =~ 1A% A2 + a0 AP
The two lines now have the pure absorption lineshape.

3.6.2.3 Frequency discrimination with retention of absorption lineshapes

It is essential to be able to combine frequency discrimination inFthe
dimension with retention of pure absorption lineshapes. Three different ways of
achieving this are commonly used; each will be analysed here.

States-Haberkorn-Ruben method

The essence of the States-Haberkorn-Ruben (SHR) method is the observation
that the cosine modulated data set, processed as described in section 3.6.2.2,
gives two positive absorption mode peaks at2y(+(,) and (=21,+2.),
whereas the sine modulated data set processed in the same way gives a
spectrum in which one peak is negative and one positive. Subtracting these
spectra from one another gives the required absorption mode frequency
discriminated spectrum (see the diagram below):

ReS{at, )" B im{ St )]

_ [ 1AW AR 41,00 A»EZ)] _[_ 1ADA@ 4 1A Aiz)]
— El) AJ(,Z)

In practice it is usually more convenient to achieve this result in the following
way, which is mathematically identical.
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The cosine and sine data sets are transformed with respeetno the real
parts of each are taken. Then a new complex data set is formed using the cosine
data for the real part and the sine data for the imaginary part:

S(tl"‘)z)sm - S(tl,a)z)?e +i5(t1'a’2)Te
= ycodQ,t,) exp(— t,/ Tz(l))Aiz) +iysin(Qit,) exp(— t,/TY ) AP

= VeXp(i Qltl) eXp(_ tl/Tz(l) ) A?

Fourier transformation with respect tajives a spectrum whose real part
contains the required frequency discriminated absorption mode spectrum

Sar.), =142 +i0E] A0
- yA(l) A(Z) +iD(l) A(Z)

Marion-W(ithrich or TPPI method

The idea behind the TPPI (time proportional phase incrementation) or Marion—
Withrich (MW) method is to arrange things so that all of the peaks have
positive offsets. Then, frequency discrimination would not be required as there
would be no ambiguity.

One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum. Simple though this is, it is
not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the spectrum,
but it is made to appear that all the frequencies are positive by phase shifting
systematically some of the pulses in the sequence in concert with the
incrementation of;.

In section 3.2 it was shown that in the EXSY sequence the cosine
modulation int;, cos(it;), could be turned into sine modulation, — i),
by shifting the phase of the first pulse by 90°. The effect of such a phase shift
can be represented mathematically in the following way.

Recall that@ is in units of radians™§ and so if t is in seconds (t is in
radians; <t can therefore be described as a phase which depends on time. It is
also possible to consider phases which do not depend on time, as was the case
for the phase errors considered in section 3.6.1.1

The change from cosine to sine modulation in the EXSY experiment can be
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though of as a phase shift of the signal;in Mathematically, such a phase
shifted cosine wave is written as c@sf; + ¢, whereg@is the phase shift in
radians. This expression can be expanded using the well known formula

cod A+ B) = cosAcosB-sin AsinB to give
cos(Qltl + (0) = cosQ,tcosp—sinQ,tsing
If the phase shiftyg is V2 radians the result is

cos(Qltl + 71/2) = cosQ,tcosmy2 -sinQ,tsinm2
=-snQt

In words, a cosine wave, phase shiftedi®/radians (90°) is the same thing as

a sine wave. Thus, in the EXSY experiment the effect of changing the phase of

the first pulse by 90° can be described as a phase shift of the signal by 90°.
Suppose that instead of a fixed phase shift, the phase shift is made

proportional tat;; what this means is that each titpés incremented the phase

Is also incremented in concert. The constant of proportion between the time

dependent phaseti), andt; will be written twgditiona

¢(t1) = Wagditiona L1

Clearly the units ofegitiona are radians$, that is cagditonaiiS a frequency. The
new time-domain function with the inclusion of thisincrementing phase is thus

COS(Qltl + (‘(tl)) = COE(Qltl + Wagitional tl)

= COS(Ql + Wyditional )tl

In words, the effect of incrementing the phase in concert with t; isto add a
frequency gditional to al of the offsets in the spectrum. The TPPI method
utilizes this option of shifting all the frequenciesin the following way.

In one-dimensional pulse-Fourier transform NMR the free induction signal is
sampled at regular intervals A. After transformation the resulting spectrum
displays correctly peaks with offsets in the range —(SW/2) to +(SW/2) where
SW is the spectral width which is given byAl{this comes about from the
Nyquist theorem of data sampling). Frequencies outside this range are not
represented correctly.
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Suppose that the required frequency range inFthdimension is from —

Y

(SWi/2) to +(SW/2) (in COSY and EXSY this will be the same as the range in sw.2 ¢

F.). To make it appear that all the peaks have a positive offset, it will be
necessary to add (SY®) to all the frequencies. Then the peaks will be in the

range 0 to (SW.

As the maximum frequency is now (Wather than (SW2) the sampling
interval,A;, will have to be halvede. A; = 1/(2SW) in order that the range of

frequencies present are represented properly.

The phase increment ®qdgiionati, butt; can be written asA; for the nth
increment ot;. The required value faiqgitiona 1S 2SW1/2) , where the R is
to convert from frequency (the units of $Wo rad s, the units of gditional
Putting all of this together aqditional1 Can be expressed, for the nth increment as

[1SW,
Wogiitional t1 = anfﬁrﬂl)

The way in which the phase incrementation increases the frequency of the
cosine wave is shown below:

_ZHQ%%'ZSME

_n—
2

0.6+
04+ .
02+

1 TQOO0 000000 ®
O
[ ] [oe] ] (o7 Yo) o

0,2 +
0,4 +
_0,6 4
-0,8 + o ©

time

The open circles lie on a cosine wave, cos({2 x n4), where 4 is the sampling interval and nruns 0, 1, 2 ...
The closed circles lie on a cosine wave in which an additional phase is incremented on each point i.e. the
function is cos(2 x n4 + n ¢); here ¢= 7#8. The way in which this phase increment increases the frequency

of the cosine wave is apparent.
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peaks gives them all positive
offsets, but some, shown
dotted) will then fall outside the
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If the spectral width is doubled
all peaks are represented
correctly — spectrum c.
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TPPI phase incrementation
applied to a COSY sequence.
The phase of the first pulse is
incremented by 90° each time
t1 is incremented.

In words this means that each timds incremented, the phase of the signal
should also be incremented by 90°, for example by incrementing the phase of
one of the pulses. The way in which it can be decided which pulse to increment
will be described in lecture 4.

A data set from an experiment to which TPPI has been applied is simply
amplitude modulated ity and so can be processed according to the method
described for cosine modulated data so as to obtain absorption mode lineshapes.
As the spectrum is symmetrical abdut = O it is usual to use a modified
Fourier transform routine which saves effort and space by only calculating the
positive frequency part of the spectrum.

Echo anti-echo method

Few two-dimensional experiments naturally produce phase modulated data sets,
but if gradient pulses are used for coherence pathway selection (see lecture 4) it
is then quite often found that the data are phase modulated. In one way this is
an advantage, as it means that no special steps are required to obtain frequency
discrimination. However, phase modulated data sets give rise to spectra with
phase-twist lineshapes, which are very undesirable. So, it is usual to attempt to
use some method to eliminate the phase-twist lineshape, while at the same time
retaining frequency discrimination.

The key to how this can be done lies in the fact that two kinds of phase
modulated data sets can usually be recorded. The first is call&dtype or
anti-echo spectrum

S(tmtz)p = yexp(intl)eXp(— tl/Tz(l))exp(intz)exp(— tZ/Tz(z))

the 'P" indicates positive, meaning here that the sign of the frequencies in
andF, are the same.

The second data set is called the echg-type

St,.t,),, = vexp(-iQut,) exp(—tl/Tz(l)) exfiQ,t,) exér tZ/TZ(Z))

the "N" indicates negative, meaning here that the sign of the frequencies in F;
and F, are opposite. Aswill be explained in lecture 4 in gradient experiments it
is easy to arrange to record either the P- or N-type spectrum.

The simplest was to proceed is to compute two new data sets which are
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%[S(tl’tZ)P + S(tl’tZ)N] -
%y[exp(intl) +exp(- intl)] exp(— tl/Tz‘l’)exp(iQth) exp(— t2/T2‘2’)
= ycos(Qltl) exp(— tl/Tz(l))exp(iQth) exp(— tz/Tz(Z))

?li[s(tl'tz)p - S(tl’tz)N] =
o y[exp(intl) —exp(- intl)] exp(-t,/T,®) exp(i.t, ) exp(- t,/T,?)
= ysin(Q.t,) exp(— t, /T, ) exp(intz)exp(— t, /T2(2>)

These two combinations are just the cosine and sine modulated data sets that
are the inputs needed for the SHR method. The pure absorption spectrum can
therefore be calculated in the same way starting with these combinations.

3.6.2.4 Phasein two-dimensional spectra

In practice there will be instrumental and other phase shifts, possibly in both
dimensions, which mean that the time-domain functions are not the idealised
ones treated above. For example, the cosine modulated data set might be

S(t), = yeod @y, + @) exp(-1,/ T )expli,t, +ig)exp(-t,/T¢)

whereg@ and g are the phase errors ki andF, respectively. Processing this
data set in the manner described above will not give a pure absorption spectrum.
However, it is possible to recover the pure absorption spectrum by software
manipulations of the spectrum, just as was described for the case of one-
dimensional spectra. Usually, NMR data processing software provides options
for making such phase corrections to two-dimensional data sets.

3-35



