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7 Two-dimensional NMR†

7.1 Introduction

The basic ideas of two-dimensional NMR will be introduced by reference to the
appearance of a COSY spectrum; later in this chapter the product operator
formalism will be used to predict the form of the spectrum.

Conventional NMR spectra (one-dimensional spectra) are plots of intensity
vs. frequency; in two-dimensional spectroscopy intensity is plotted as a function
of two frequencies, usually called F1 and F2.  There are various ways of
representing such a spectrum on paper, but the one most usually used is to make
a contour plot in which the intensity of the peaks is represented by contour lines
drawn at suitable intervals, in the same way as a topographical map.  The
position of each peak is specified by two frequency co-ordinates corresponding
to F1 and F2.  Two-dimensional NMR spectra are always arranged so that the F2

co-ordinates of the peaks correspond to those found in the normal one-
dimensional spectrum, and this relation is often emphasized by plotting the one-
dimensional spectrum alongside the F2 axis.

The figure shows a schematic COSY spectrum of a hypothetical molecule
containing just two protons, A and X, which are coupled together.  The one-
dimensional spectrum is plotted alongside the F2 axis, and consists of the
familiar pair of doublets centred on the chemical shifts of A and X, δA and δX

respectively.  In the COSY spectrum, the F1 co-ordinates of the peaks in the
two-dimensional spectrum also correspond to those found in the normal one-
dimensional spectrum and to emphasize this point the one-dimensional
spectrum has been plotted alongside the F1 axis.  It is immediately clear that
this COSY spectrum has some symmetry about the diagonal F1 = F2 which has
been indicated with a dashed line.

In a one-dimensional spectrum scalar couplings give rise to multiplets in the
spectrum.  In two-dimensional spectra the idea of a multiplet has to be
expanded somewhat so that in such spectra a multiplet consists of an array of
individual peaks often giving the impression of a square or rectangular outline.
Several such arrays of peaks can be seen in the schematic COSY spectrum
shown above.  These two-dimensional multiplets come in two distinct types:
diagonal-peak multiplets which are centred around the same F 1 and F 2

frequency co-ordinates and cross-peak multiplets which are centred around
different F1 and F2 co-ordinates.  Thus in the schematic COSY spectrum there
are two diagonal-peak multiplets centred at F1 = F2 = δA and F1 = F2 = δX, one
cross-peak multiplet centred at F1 = δA, F2 = δX and a second cross-peak
multiplet centred at F1 = δX, F2 = δA.

The appearance in a COSY spectrum of a cross-peak multiplet F1 = δA, F2 =
δX indicates that the two protons at shifts δA and δX have a scalar coupling
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between them.  This statement is all that is required for the analysis of a COSY
spectrum, and it is this simplicity which is the key to the great utility of such
spectra.  From a single COSY spectrum it is possible to trace out the whole
coupling network in the molecule

7.1.1 General Scheme for two-Dimensional NMR

In one-dimensional pulsed Fourier transform NMR the signal is recorded as a
function of one time variable and then Fourier transformed to give a spectrum
which is a function of one frequency variable.  In two-dimensional NMR the
signal is recorded as a function of two time variables, t1 and t2, and the resulting
data Fourier transformed twice to yield a spectrum which is a function of two
frequency variables.  The general scheme for two-dimensional spectroscopy is

evolution detection

t1 t2
mixingpreparation

In the first period, called the preparation time, the sample is excited by one
or more pulses.  The resulting magnetization is allowed to evolve for the first
time period, t1.  Then another period follows, called the mixing time, which
consists of a further pulse or pulses.  After the mixing period the signal is
recorded as a function of the second time variable, t2.  This sequence of events
is called a pulse sequence and the exact nature of the preparation and mixing
periods determines the information found in the spectrum.

It is important to realize that the signal is not recorded during the time t1, but
only during the time t2 at the end of the sequence.  The data is recorded at
regularly spaced intervals in both t1 and t2.

The two-dimensional signal is recorded in the following way.  First, t1 is set
to zero, the pulse sequence is executed and the resulting free induction decay
recorded.  Then the nuclear spins are allowed to return to equilibrium. t1 is then
set to ∆1, the sampling interval in t1, the sequence is repeated and a free
induction decay is recorded and stored separately from the first.  Again the
spins are allowed to equilibrate, t1 is set to 2∆1, the pulse sequence repeated and
a free induction decay recorded and stored.  The whole process is repeated
again for t1 = 3∆1, 4∆1 and so on until sufficient data is recorded, typically 50 to
500 increments of t1.  Thus recording a two-dimensional data set involves
repeating a pulse sequence for increasing values of t1 and recording a free
induction decay as a function of t2 for each value of t1.

7.1.2 Interpretation of peaks in a two-dimensional spectrum

Within the general framework outlined in the previous section it is now
possible to interpret the appearance of a peak in a two-dimensional spectrum at
particular frequency co-ordinates.
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Suppose that in some unspecified two-dimensional spectrum a peak appears at
F1 = 20 Hz, F2 = 80 Hz (spectrum a above)  The interpretation of this peak is
that a signal was present during t1 which evolved with a frequency of 20 Hz.
During the mixing time this same signal was transferred in some way to another
signal which evolved at 80 Hz during t2.

Likewise, if there is a peak at F1 = 20 Hz, F2 = 20 Hz (spectrum b) the
interpretation is that there was a signal evolving at 20 Hz during t1 which was
unaffected by the mixing period and continued to evolve at 20 Hz during t2.
The processes by which these signals are transferred will be discussed in the
following sections.

Finally, consider the spectrum shown in c.  Here there are two peaks, one at
F1 = 20 Hz, F2 = 80 Hz and one at F1 = 20 Hz, F2 = 20 Hz.  The interpretation
of this is that some signal was present during t1 which evolved at 20 Hz and that
during the mixing period part of it was transferred into another signal which
evolved at 80 Hz during t2.  The other part remained unaffected and continued
to evolve at 20 Hz.  On the basis of the previous discussion of COSY spectra,
the part that changes frequency during the mixing time is recognized as leading
to a cross-peak and the part that does not change frequency leads to a diagonal-
peak.  This kind of interpretation is a very useful way of thinking about the
origin of peaks in a two-dimensional spectrum.

It is clear from the discussion in this section that the mixing time plays a
crucial role in forming the two-dimensional spectrum.  In the absence of a
mixing time, the frequencies that evolve during t1 and t2 would be the same and
only diagonal-peaks would appear in the spectrum.  To obtain an interesting
and useful spectrum it is essential to arrange for some process during the
mixing time to transfer signals from one spin to another.

7.2 EXSY and NOESY spectra in detail

In this section the way in which the EXSY (EXchange SpectroscopY) sequence
works will be examined; the pulse sequence is shown opposite.  This
experiment gives a spectrum in which a cross-peak at frequency co-ordinates F1

= δA, F2 = δB indicates that the spin resonating at δA is chemically exchanging
with the spin resonating at δB.

The pulse sequence for EXSY is shown opposite.  The effect of the sequence
will be analysed for the case of two spins, 1 and 2, but without any coupling
between them.  The initial state, before the first pulse, is equilibrium

t1
t2τmix

The pulse sequence for EXSY
(and NOESY).  All pulses have
90° flip angles.
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magnetization, represented as I1z + I2z; however, for simplicity only
magnetization from the first spin will be considered in the calculation.

The first 90° pulse (of phase x) rotates the magnetization onto –y

I Iz
I I

y
x x

1
2 2

1
1 2π π →  → −

(the second arrow has no effect as it involves operators of spin 2).  Next follows
evolution for time t1

−  →  → − +I t I t Iy
t I t I

y x
z z

1 1 1 1 1 1 1
1 1 1 2 1 2Ω Ω Ω Ωcos sin

again, the second arrow has no effect.  The second 90° pulse turns the first term
onto the z-axis and leaves the second term unaffected

−  →  → −

 →  →

cos cos

sin sin

Ω Ω

Ω Ω
1 1 1

2 2
1 1 1

1 1 1
2 2

1 1 1

1 2

1 2

t I t I

t I t I

y
I I

z

x
I I

x

x x

x x

π π

π π

Only the I1z term leads to cross-peaks by chemical exchange, so the other term
will be ignored (in an experiment this is achieved by appropriate coherence
pathway selection).  The effect of the first part of the sequence is to generate, at
the start of the mixing time, τmix, some z-magnetization on spin 1 whose size
depends, via the cosine term, on t1 and the frequency, Ω1, with which the spin 1
evolves during t1.  The magnetization is said to be frequency labelled.

During the mixing time, τmix, spin 1 may undergo chemical exchange with
spin 2.  If it does this, it carries with it the frequency label that it acquired
during t1.  The extent to which this transfer takes place depends on the details of
the chemical kinetics; it will be assumed simply that during τmix a fraction f of
the spins of type 1 chemically exchange with spins of type 2.  The effect of the
mixing process can then be written

−  → − −( ) −cos cos cosΩ Ω Ω1 1 1 1 1 1 1 1 21t I f t I f t Iz z z
mixing

The final 90° pulse rotates this z-magnetization back onto the y-axis

− −( )  →  → −( )
−  →  →

1 11 1 1
2 2

1 1 1

1 1 2
2 2

1 1 2

1 2

1 2

f t I f t I

f t I f t I

z
I I

y

z
I I

y

x x

x x

cos cos

cos cos

Ω Ω

Ω Ω

π π

π π

Although the magnetization started on spin 1, at the end of the sequence
there is magnetization present on spin 2 – a process called magnetization
transfer.  The analysis of the experiment is completed by allowing the I1y and I2y

operators to evolve for time t2.

1

1 1

1 1 1

1 2 1 1 1 1 2 1 1 1

1 1 2

2 2 1 1 2

1 2 1 2 2 2

1 2 1 2 2 2

−( )  →  →

−( ) − −( )
 →  →

f t I

f t t I f t t I

f t I

f t t I

y
t I t I

y x

y
t I t I

z z

z z

cos

cos cos sin cos

cos

cos cos

Ω

Ω Ω Ω Ω

Ω
Ω Ω

Ω Ω

Ω Ω

yy xf t t I− sin cosΩ Ω2 2 1 1 2

If it is assumed that the y-magnetization is detected during t2 (this is an arbitrary
choice, but a convenient one), the time domain signal has two terms:
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1 1 2 1 1 2 2 1 1−( ) +f t t f t tcos cos cos cosΩ Ω Ω Ω
The crucial thing is that the amplitude of the signal recorded during t2 is

modulated by the evolution during t1.  This can be seen more clearly by
imagining the Fourier transform, with respect to t2, of the above function.  The
cosΩ1 2t  and cosΩ2 2t  terms transform to give absorption mode signals centred
at Ω1 and Ω2 respectively in the F2 dimension; these are denoted A1

2( ) and A2
2( )

(the subscript indicates which spin, and the superscript which dimension).  The
time domain function becomes

1 1
2

1 1 2
2

1 1−( ) +( ) ( )f A t fA tcos cosΩ Ω
If a series of spectra recorded as t1 progressively increases are inspected it
would be found that the cosΩ1 2t  term causes a change in size of the peaks at Ω1

and Ω2 – this is the modulation referred to above.

Fourier transformation with respect to t1 gives peaks with an absorption
lineshape, but this time in the F1 dimension; an absorption mode signal at Ω1 in
F1 is denoted A1

1( ).  The time domain signal becomes, after Fourier
transformation in each dimension

1 1
2

1
1

2
2

1
1−( ) +( ) ( ) ( ) ( )f A A fA A

Thus, the final two-dimensional spectrum is predicted to have two peaks.  One
is at (F1, F2) = (Ω1, Ω1) – this is a diagonal peak and arises from those spins of
type 1 which did not undergo chemical exchange during τmix.  The second is at
(F1, F2) = (Ω1, Ω2) – this is a cross peak which indicates that part of the
magnetization from spin 1 was transferred to spin 2 during the mixing time.  It
is this peak that contains the useful information.  If the calculation were
repeated starting with magnetization on spin 2 it would be found that there are
similar peaks at (Ω2, Ω2) and (Ω2, Ω1).

The NOESY (Nuclear Overhauser Effect SpectrocopY) spectrum is recorded
using the same basic sequence.  The only difference is that during the mixing
time the cross-relaxation is responsible for the exchange of magnetization
between different spins.  Thus, a cross-peak indicates that two spins are
experiencing mutual cross-relaxation and hence are close in space.

Having completed the analysis it can now be seen how the EXCSY/NOESY
sequence is put together.  First, the 90° – t1 – 90° sequence is used to generate
frequency labelled z-magnetization.  Then, during τmix, this magnetization is
allowed to migrate to other spins, carrying its label with it.  Finally, the last
pulse renders the z-magnetization observable.

7.3 More about two-dimensional transforms

From the above analysis it was seen that the signal observed during t2 has an
amplitude proportional to cos(Ω1t1); the amplitude of the signal observed during
t2 depends on the evolution during t1.  For the first increment of t1 (t1 = 0), the
signal will be a maximum, the second increment will have size proportional to
cos(Ω1∆1), the third proportional to cos(Ω12∆1), the fourth to cos(Ω13∆1) and so

time

frequency
Ω

Fourier transform

The Fourier transform of a
decaying cosine function
cosΩt exp(–t/T2)  i s  an
absorption mode Lorentzian
centred at frequency Ω; the real
part of the spectrum has been
plotted.
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on.  This modulation of the amplitude of the observed signal by the t1 evolution
is illustrated in the figure below.

In the figure the first column shows a series of free induction decays that
would be recorded for increasing values of t1 and the second column shows the
Fourier transforms of these signals.  The final step in constructing the two-
dimensional spectrum is to Fourier transform the data along the t1 dimension.
This process is also illustrated in the figure.  Each of the spectra shown in the
second column are represented as a series of data points, where each point
corresponds to a different F2 frequency.  The data point corresponding to a
particular F2 frequency is selected from the spectra for t1 = 0, t1 = ∆1, t1 = 2∆1

and so on for all the t1 values.  Such a process results in a function, called an
interferogram, which has t1 as the running variable.

Illustration of how the modulation of a free induction decay by evolution during t1 gives rise to a peak in the



7–7

two-dimensional spectrum.  In the left most column is shown a series of free induction decays that would be
recorded for successive values of t1; t1 increases down the page.  Note how the amplitude of these free
induction decays varies with t1, something that becomes even plainer when the time domain signals are
Fourier transformed, as shown in the second column.  In practice, each of these F2 spectra in column two
consist of a series of data points.  The data point at the same frequency in each of these spectra is extracted
and assembled into an interferogram, in which the horizontal axis is the time t1.  Several such
interferograms, labelled a to g, are shown in the third column.  Note that as there were eight F2 spectra in
column two corresponding to different t1 values there are eight points in each interferogram.  The F2
frequencies at which the interferograms are taken are indicated on the lower spectrum of the second
column.  Finally, a second Fourier transformation of these interferograms gives a series of F1 spectra shown
in the right hand column.  Note that in this column F2 increases down the page, whereas in the first column t1
increase down the page.  The final result is a two-dimensional spectrum containing a single peak.

Several interferograms, labelled a to g, computed for different F2 frequencies
are shown in the third column of the figure.  The particular F2 frequency that
each interferogram corresponds to is indicated in the bottom spectrum of the
second column.  The amplitude of the signal in each interferogram is different,
but in this case the modulation frequency is the same.  The final stage in the
processing is to Fourier transform these interferograms to give the series of
spectra which are shown in the right most column of the figure.  These spectra
have F1 running horizontally and F2 running down the page.  The modulation of
the time domain signal has been transformed into a single two-dimensional
peak.  Note that the peak appears on several traces corresponding to different F2

frequencies because of the width of the line in F2.

The time domain data in the t1 dimension can be manipulated by multiplying
by weighting functions or zero filling, just as with conventional free induction
decays.

7.4 Two-dimensional experiments using coherence transfer
through J-coupling

Perhaps the most important set of two-dimensional experiments are those which
transfer magnetization from one spin to another via the scalar coupling between
them.  As was seen in section 6.3.3, this kind of transfer can be brought about
by the action of a pulse on an anti-phase state.  In outline the basic process is

I I I I Ix y z
x

z y1 1 2 1 22 2coupling 90 ( ) to both spins

                     spin 1 spin 2

 →  →°

7.4.1 COSY

The pulse sequence for this experiment is shown opposite.  It will be assumed
in the analysis that all of the pulses are applied about the x-axis and for
simplicity the calculation will start with equilibrium magnetization only on spin
1.  The effect of the first pulse is to generate y-magnetization, as has been
worked out previously many times

I Iz
I I

y
x x

1
2 2

1
1 2π π →  → −

This state then evolves for time t1, first under the influence of the offset of spin
1 (that of spin 2 has no effect on spin 1 operators):

−  → − +I t I t Iy
t I

y x
z

1 1 1 1 1 1 1
1 1 1Ω Ω Ωcos sin

t1
t2

Pulse sequence for the two-
dimensional COSY experiment
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Both terms on the right then evolve under the coupling

−  → − +

 → +

cos cos cos sin cos

sin cos sin sin sin

Ω Ω Ω

Ω Ω Ω
1 1 1

2
12 1 1 1 1 12 1 1 1 1 2

1 1 1
2

12 1 1 1 1 12 1 1 1 1

12 1 1 2

12 1 1 2

2

2

t I J t t I J t t I I

t I J t t I J t t I I

y
J t I I

y x z

x
J t I I

x y

z z

z z

π

π

π π

π π 22z

That completes the evolution under t1.  Now all that remains is to consider the
effect of the final pulse, remembering that the effect of the pulse on both spins
needs to be computed.  Taking the terms one by one:

−  →  → − { }
 →  → − { }

cos cos cos cos

sin cos sin cos

cos sin

π π

π π

π

π π

π π

J t t I J t t I

J t t I I J t t I I

J t

y
I I

z

x z
I I

x y

x x

x x

12 1 1 1 1
2 2

12 1 1 1 1

12 1 1 1 1 2
2 2

12 1 1 1 1 2

12 1

1 2

1 2

1

2 2 2

Ω Ω

Ω Ω

ΩΩ Ω

Ω Ω
1 1 1

2 2
12 1 1 1 1

12 1 1 1 1 2
2 2

12 1 1 1 1 2

1 2

1 2

3

2 2 4

t I J t t I

J t t I I J t t I I

x
I I

x

y z
I I

z y

x x

x x

π π

π π

π

π π

 →  → { }
 →  → − { }

cos sin

sin sin sin sin

Terms {1} and {2} are unobservable.  Term {3} corresponds to in-phase
magnetization of spin 1, aligned along the x-axis.  The t1 modulation of this
term depends on the offset of spin 1, so a diagonal peak centred at (Ω1,Ω1) is
predicted.  Term {4} is the really interesting one.  It shows that anti-phase
magnetization on spin 1, 2 1 2I Iy z , is transferred to anti-phase magnetization on
spin 2, 2 1 2I Iz y ; this is an example of coherence transfer.  Term {4} appears as
observable magnetization on spin 2, but it is modulated in t1 with the offset of
spin 1, thus it gives rise to a cross-peak centred at (Ω1,Ω2).  It has been shown,
therefore, how cross- and diagonal-peaks arise in a COSY spectrum.

Some more consideration should be give to the form of the cross- and
diagonal peaks.  Consider again term {3}: it will give rise to an in-phase
multiplet in F2, and as it is along the x-axis, the lineshape will be dispersive.
The form of the modulation in t1 can be expanded, using the formula,
cos sin sin sinA B B A B A= +( ) + −( ){ }1

2 to give

cos sin sin sinπ π πJ t t t J t t J t12 1 1 1
1
2 1 1 12 1 1 1 12Ω Ω Ω= +( ) + −( ){ }

Two peaks in F1 are expected at Ω1 12± πJ , these are just the two lines of the
spin 1 doublet.  In addition, since these are sine modulated they will have the
dispersion lineshape.  Note that both components in the spin 1 multiplet
observed in F2 are modulated in this way, so the appearance of the two-
dimensional multiplet can best be found by "multiplying together" the
multiplets in the two dimensions, as shown opposite. In addition, all four
components of the diagonal-peak multiplet have the same sign, and have the
double dispersion lineshape illustrated below

time

frequency

Ω

Fourier transform

The Fourier transform of a
decaying s ine funct ion
sinΩt exp(–t/T2) is a dispersion
mode Lorentzian centred at
frequency Ω.

F1

J12

F2

J12

Schematic view of the diagonal
peak from a COSY spectrum.
The squares are supposed to
indicate the two-dimensional
double dispersion lineshape
illustrated below
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The double dispersion lineshape seen in pseudo 3D and as a contour plot; negative contours are indicated
by dashed lines.

Term {4} can be treated in the same way.  In F2 we know that this term gives
rise to an anti-phase absorption multiplet on spin 2.  Using the relationship
sin sin cos cosB A B A B A= − +( ) + −( ){ }1

2  the modulation in t1 can be expanded

sin sin cos cosπ π πJ t t t J t t J t12 1 1
1
2 1 1 12 1 1 1 12Ω Ω Ω= − +( ) + −( ){ }

Two peaks in F1, at Ω1 12± πJ , are expected; these are just the two lines of the
spin 1 doublet.  Note that the two peaks have opposite signs – that is they are
anti-phase in F1.  In addition, since these are cosine modulated we expect the
absorption lineshape (see section 7.2).  The form of the cross-peak multiplet
can be predicted by "multiplying together" the F1 and F2 multiplets, just as was
done for the diagonal-peak multiplet.  The result is shown opposite.  This
characteristic pattern of positive and negative peaks that constitutes the cross-
peak is know as an anti-phase square array.

The double absorption lineshape seen in pseudo 3D and as a contour plot.

COSY spectra are sometimes plotted in the absolute value mode, where all
the sign information is suppressed deliberately.  Although such a display is
convenient, especially for routine applications, it is generally much more
desirable to retain the sign information.  Spectra displayed in this way are said
to be phase sensitive; more details of this are given in section 7.6.

As the coupling constant becomes comparable with the linewidth, the
positive and negative peaks in the cross-peak multiplet begin to overlap and
cancel one another out.  This leads to an overall reduction in the intensity of the
cross-peak multiplet, and ultimately the cross-peak disappears into the noise in
the spectrum.  The smallest coupling which gives rise to a cross-peak is thus set

F1

J12

F2

J12

Schematic view of the cross-
peak multiplet from a COSY
spectrum. The circles are
supposed to indicate the two-
dimensional double absorption
lineshape illustrated below;
filled circles represent positive
intensity, open represent
negative intensity.
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by the linewidth and the signal-to-noise ratio of the spectrum.

7.4.2 Double-quantum filtered COSY (DQF COSY)

The conventional COSY experiment suffers from a disadvantage which arises
from the different phase properties of the cross- and diagonal-peak multiplets.
The components of a diagonal peak multiplet are all in-phase and so tend to
reinforce one another.  In addition, the dispersive tails of these peaks spread far
into the spectrum.  The result is a broad intense diagonal which can obscure
nearby cross-peaks.  This effect is particularly troublesome when the coupling
is comparable with the linewidth as in such cases, as was described above,
cancellation of anti-phase components in the cross-peak multiplet reduces the
overall intensity of these multiplets.

This difficulty is neatly side-stepped by a modification called double
quantum filtered COSY (DQF COSY).  The pulse sequence is shown opposite.

Up to the second pulse the sequence is the same as COSY.  However, it is
arranged that only double-quantum coherence present during the (very short)
delay between the second and third pulses is ultimately allowed to contribute to
the spectrum.  Hence the name, "double-quantum filtered", as all the observed
signals are filtered through double-quantum coherence.  The final pulse is
needed to convert the double quantum coherence back into observable
magnetization.  This double-quantum derived signal is selected by the use of
coherence pathway selection using phase cycling or field gradient pulses.

In the analysis of the COSY experiment, it is seen that after the second 90°
pulse it is term {2} that contains double-quantum coherence; this can be
demonstrated explicitly by expanding this term in the raising and lowering
operators, as was done in section 6.5

2 21 2
1
2 1 1

1
2 2 2

1
2 1 2 1 2

1
2 1 2 1 2

I I I I I I

I I I I I I I I

x y i

i i

= × +( ) × −( )
= −( ) + − +( )

+ − + −

+ + − − + − − +

This term contains both double- and zero-quantum coherence.  The pure
double-quantum part is the term in the first bracket on the right; this term can
be re-expressed in Cartesian operators:

1
2 1 2 1 2

1
2 1 1 1 1 2 2 2 2

1
2 1 2 1 22 2

i i x y x y x y x y

x y y x

I I I I I iI I iI I iI I iI

I I I I

+ + − −−( ) = +( ) +( ) + −( ) −( )[ ]
= +[ ]

The effect of the last 90°(x) pulse on the double quantum part of term {2} is
thus

− +( )  →  →

− +( )

1
2 12 1 1 1 1 2 1 2

2 2

1
2 12 1 1 1 1 2 1 2

2 2

2 2

1 2sin cos

sin cos

π

π

π πJ t t I I I I

J t t I I I I

x y y x
I I

x z z x

x xΩ

Ω

The first term on the right is anti-phase magnetization of spin 1 aligned along
the x-axis; this gives rise to a diagonal-peak multiplet.  The second term is anti-
phase magnetization of spin 2, again aligned along x; this will give rise to a

t1
t2

The pulse sequence for DQF
COSY; the delay between the
last two pulses is usually just a
few microseconds.
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cross-peak multiplet.  Both of these terms have the same modulation in t1,
which can be shown, by a similar analysis to that used above, to lead to an anti-
phase multiplet in F1.  As these peaks all have the same lineshape the overall
phase of the spectrum can be adjusted so that they are all in absorption; see
section 7.6 for further details.  In contrast to the case of a simple COSY
experiment both the diagonal- and cross-peak multiplets are in anti-phase in
both dimensions, thus avoiding the strong in-phase diagonal peaks found in the
simple experiment.  The DQF COSY experiment is the method of choice for
tracing out coupling networks in a molecule.

7.4.3 Heteronuclear correlation experiments

One particularly useful experiment is to record a two-dimensional spectrum in
which the co-ordinate of a peak in one dimension is the chemical shift of one
type of nucleus (e.g. proton) and the co-ordinate in the other dimension is the
chemical shift of another nucleus (e.g. carbon-13) which is coupled to the first
nucleus.  Such spectra are often called shift correlation maps or shift
correlation spectra.

The one-bond coupling between a carbon-13 and the proton directly attached
to it is relatively constant (around 150 Hz), and much larger than any of the
long-range carbon-13 proton couplings.  By utilizing this large difference
experiments can be devised which give maps of carbon-13 shifts vs the shifts of
directly attached protons.  Such spectra are very useful as aids to assignment;
for example, if the proton spectrum has already been assigned, simply recording
a carbon-13 proton correlation experiment will give the assignment of all the
protonated carbons.

Only one kind of nuclear species can be observed at a time, so there is a
choice as to whether to observe carbon-13 or proton when recording a shift
correlation spectrum.  For two reasons, it is very advantageous from the
sensitivity point of view to record protons.  First, the proton magnetization is
larger than that of carbon-13 because there is a larger separation between the
spin energy levels giving, by the Boltzmann distribution, a greater population
difference.  Second, a given magnetization induces a larger voltage in the coil
the higher the NMR frequency becomes.

Trying to record a carbon-13 proton shift correlation spectrum by proton
observation has one serious difficulty.  Carbon-13 has a natural abundance of
only 1%, thus 99% of the molecules in the sample do not have any carbon-13 in
them and so will not give signals that can be used to correlate carbon-13 and
proton.  The 1% of molecules with carbon-13 will give a perfectly satisfactory
spectrum, but the signals from these resonances will be swamped by the much
stronger signals from non-carbon-13 containing molecules.  However, these
unwanted signals can be suppressed using coherence selection in a way which
will be described below.
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7.4.3.1 Heteronuclear multiple-quantum correlation (HMQC)

The pulse sequence for this popular experiment is given opposite.  The
sequence will be analysed for a coupled carbon-13 proton pair, where spin 1
will be the carbon-13 and spin 2 the proton.

The analysis will start with equilibrium magnetization on spin 1, I1z.  The
whole analysis can be greatly simplified by noting that the 180° pulse is exactly
midway between the first 90° pulse and the start of data acquisition.  As has
been shown in section 6.4, such a sequence forms a spin echo and so the
evolution of the offset of spin 1 over the entire period (t1 + 2∆) is refocused.
Thus the evolution of the offset of spin 1 can simply be ignored for the
purposes of the calculation.

At the end of the delay ∆ the state of the system is simply due to evolution of
the term –I1y under the influence of the scalar coupling:

− +cos sinπ πJ I J I Iy x z12 1 12 1 22∆ ∆

It will be assumed that ∆ = 1/(2J12), so only the anti-phase term is present.

The second 90° pulse is applied to carbon-13 (spin 2) only

2 21 2
2

1 2
2I I I Ix z

I
x y

xπ → −

This pulse generates a mixture of heteronuclear double- and zero-quantum
coherence, which then evolves during t1.  In principle this term evolves under
the influence of the offsets of spins 1 and 2 and the coupling between them.
However, it has already been noted that the offset of spin 1 is refocused by the
centrally placed 180° pulse, so it is not necessary to consider evolution due to
this term.  In addition, it can be shown that multiple-quantum coherence
involving spins i and j does not evolve under the influence of the coupling, Jij,
between these two spins.  As a result of these two simplifications, the only
evolution that needs to be considered is that due to the offset of spin 2 (the
carbon-13).

−  → − +2 2 21 2 2 1 1 2 2 1 1 2
2 1 2I I t I I t I Ix y
t I

x y x x
zΩ Ω Ωcos sin

The second 90° pulse to spin 2 (carbon-13) regenerates the first term on the
right into spin 1 (proton) observable magnetization; the other remains
unobservable

−  → −cos cosΩ Ω2 1 1 2
2

2 1 1 22 22t I I t I Ix y
I

x z
xπ

This term then evolves under the coupling, again it is assumed that
∆ = 1/(2J12)

−  → −= ( )cos cos,Ω Ω∆ ∆
2 1 1 2

2 1 2
2 1 12 12 1 2 12t I I t Ix z

J I I J
y

z zπ

1H

13C
t1

∆ ∆
t2

The pulse sequence for HMQC.
Filled rectangles represent 90°
pulses and open rectangles
represent 180° pulses.  The
delay ∆ is set to 1/(2J12).
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This is a very nice result; in F2 there will be an in-phase doublet centred at the
offset of spin 1 (proton) and these two peaks will have an F1 co-ordinate simply
determined by the offset of spin 2 (carbon-13); the peaks will be in absorption.
A schematic spectrum is shown opposite.

The problem of how to suppress the very strong signals from protons not
coupled to any carbon-13 nuclei now has to be addressed.  From the point of
view of these protons the carbon-13 pulses might as well not even be there, and
the pulse sequence looks like a simple spin echo.  This insensitivity to the
carbon-13 pulses is the key to suppressing the unwanted signals.  Suppose that
the phase of the first carbon-13 90° pulse is altered from x to –x.  Working
through the above calculation it is found that the wanted signal from the protons
coupled to carbon-13 changes sign i.e. the observed spectrum will be inverted.
In contrast the signal from a proton not coupled to carbon-13 will be unaffected
by this change.  Thus, for each t1 increment the free induction decay is recorded
twice: once with the first carbon-13 90° pulse set to phase x and once with it set
to phase –x.  The two free induction decays are then subtracted in the computer
memory thus cancelling the unwanted signals.  This is an example of a very
simple phase cycle.

In the case of carbon-13 and proton the one bond coupling is so much larger
than any of the long range couplings that a choice of ∆ = 1/(2Jone bond) does not
give any correlations other than those through the one-bond coupling.  There is
simply insufficient time for the long-range couplings to become anti-phase.
However, if ∆  is set to a much longer value (30 to 60 ms), long-range
correlations will be seen.  Such spectra are very useful in assigning the
resonances due to quaternary carbon-13 atoms.  The experiment is often called
HMBC (heteronuclear multiple-bond correlation).

Now that the analysis has been completed it can be seen what the function of
various elements in the pulse sequence is.  The first pulse and delay generate
magnetization on proton which is anti-phase with respect to the coupling to
carbon-13.  The carbon-13 90° pulse turns this into multiple quantum
coherence.  This forms a filter through which magnetization not bound to
carbon-13 cannot pass and it is the basis of discrimination between signals from
protons bound and not bound to carbon-13.  The second carbon-13 pulse returns
the multiple quantum coherence to observable anti-phase magnetization on
proton.  Finally, the second delay ∆ turns the anti-phase state into an in-phase
state.  The centrally placed proton 180° pulse refocuses the proton shift
evolution for both the delays ∆ and t1.

7.4.3.2 Heteronuclear single-quantum correlation (HSQC)

This pulse sequence results in a spectrum identical to that found for HMQC.
Despite the pulse sequence being a little more complex than that for HMQC,
HSQC has certain advantages for recording the spectra of large molecules, such
a proteins.  The HSQC pulse sequence is often embedded in  much more
complex sequences which are used to record two- and three-dimensional

F1

J12

F21Ω

2Ω

Schematic HMQC spectrum for
two coupled spins.
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spectra of carbon-13 and nitrogen-15 labelled proteins.

1H

13C
t1

y

A B C

t2∆
2

∆
2

∆
2

∆
2

The pulse sequence for HSQC.  Filled rectangles represent 90° pulses and open rectangles represent 180°
pulses.  The delay ∆ is set to 1/(2J12); all pulses have phase x unless otherwise indicated.

If this sequence were to be analysed by considering each delay and pulse in turn
the resulting calculation would be far too complex to be useful.  A more
intelligent approach is needed where simplifications are used, for example by
recognizing the presence of spin echoes who refocus offsets or couplings.
Also, it is often the case that attention can be focused a particular terms, as
these are the ones which will ultimately lead to observable signals. This kind of
"intelligent" analysis will be illustrated here.

Periods A and C are spin echoes in which 180° pulses are applied to both
spins; it therefore follows that the offsets of spins 1 and 2 will be refocused, but
the coupling between them will evolve throughout the entire period.  As the
total delay in the spin echo is 1/(2J12) the result will be the complete conversion
of in-phase into anti-phase magnetization.

Period B is a spin echo in which a 180° pulse is applied only to spin 1.  Thus,
the offset of spin 1 is refocused, as is the coupling between spins 1 and 2; only
the offset of spin 2 affects the evolution.

With these simplifications the analysis is easy.  The first pulse generates –I1y

; during period A this then becomes –2I1xI2z.  The 90°(y) pulse to spin 1 turns
this to 2I1zI2z and the 90°(x) pulse to spin 2 turns it to –2I1zI2y.  The evolution
during period B is simply under the offset of spin 2

−  → − +2 2 21 2 2 1 1 2 2 1 1 2
2 1 2I I t I I t I Iz y
t I

z y z x
zΩ Ω Ωcos sin

The next two 90° pulses transfer the first term to spin 1; the second term is
rotated into multiple quantum and is not observed

− +  →

− −

+( )cos sin

cos sin

Ω Ω
Ω Ω

2 1 1 2 2 1 1 2
2

2 1 1 2 2 1 1 2

2 2

2 2

1 2t I I t I I

t I I t I I

z y z x
I I

y z y x

x xπ

The first term on the right evolves during period C into in-phase magnetization
(the evolution of offsets is refocused).  So the final observable term is
cosΩ2 1 1t I x .  The resulting spectrum is therefore an in-phase doublet in F2,
centred at the offset of spin 1, and these peaks will both have the same
frequency in F1, namely the offset of spin 2.  The spectrum looks just like the
HMQC spectrum.

7.5 Advanced topic: Multiple-quantum spectroscopy

A key feature of two-dimensional NMR experiments is that no direct



7–15

observations are made during t1, it is thus possible to detect, indirectly, the
evolution of unobservable coherences.  An example of the use of this feature is
in the indirect detection of multiple-quantum spectra. A typical pulse sequence
for such an experiment is shown opposite

For a two-spin system the optimum value for ∆ is 1/(2J12).  The sequence can
be dissected as follows.  The initial 90° – ∆/2 – 180° – ∆/2 – sequence is a spin
echo which, at time ∆, refocuses any evolution of offsets but allows the
coupling to evolve and generate anti-phase magnetization.  This anti-phase
magnetization is turned into multiple-quantum coherence by the second 90°
pulse.  After evolving for time t1 the multiple quantum is returned into
observable (anti-phase) magnetization by the final 90° pulse.  Thus the first
three pulses form the preparation period and the last pulse is the mixing period.

7.5.1 Double-quantum spectrum for a three-spin system

The sequence will be analysed for a system of three spins.  A complete
analysis would be rather lengthy, so attention will be focused on certain terms
as above, as many simplifying assumptions as possible will be made about the
sequence.

The starting point will be equilibrium magnetization on spin 1, I1z; after the
spin echo the magnetization has evolved due to the coupling between spin 1 and
spin 2, and the coupling between spin 1 and spin 3 (the 180° pulse causes an
overall sign change (see section 6.4.1) but this has no real effect here so it will
be ignored)

– cos sin

cos cos sin cos

cos sin sin sin

I J I J I I

J J I J J I I

J J I I J

y
J I I

y x z

J I I
y x z

x z

z z

z z

1
2

12 1 12 1 2

2
13 12 1 13 12 1 3

13 12 1 2 13

12 1 2

13 1 3

2

2

2

π

π

π π

π π π π
π π π

∆

∆

∆ ∆

∆ ∆ ∆ ∆
∆ ∆ ∆

 → − +

 → − +

+ + ππJ I I Iy z z12 1 2 34∆
[3.1]

Of these four terms, all but the first are turned into multiple-quantum by the
second 90° pulse.  For example, the second term becomes a mixture of double
and zero quantum between spins 1 and 3

sin cos sin cosπ π π ππJ J I I J J I Ix z
I I I

x y
x x x

13 12 1 3
2

13 12 1 32 21 2 3∆ ∆ ∆ ∆+ +( ) → −

It will be assumed that appropriate coherence pathway selection has been used
so that ultimately only the double-quantum part contributes to the spectrum.
This part is

−[ ] +( ){ } ≡ ( )sin cosπ πJ J I I I I Bx y y x y13 12
1
2 1 3 1 3 132 2∆ ∆ DQ 13

The term in square brackets just gives the overall intensity, but does not affect
the frequencies of the peaks in the two-dimensional spectrum as it does not
depend on t1 or t2; this intensity term is denoted B13 for brevity.  The operators
in the curly brackets represent a pure double quantum state which can be
denoted DQ 13

y
( ); the superscript (13) indicates that the double quantum is

between spins 1 and 3 (see section 6.9).

∆
2

∆
2 t1

t2

Pulse sequence for multiple-
quantum spectroscopy.
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As is shown in section 6.9, such a double-quantum term evolves under the
offset according to

B

B t B t

y
t I t I t I

y x

z z z

13

13 3 1 13 3 1

1 1 1 2 1 2 3 1 3DQ

cos DQ DQ

13

1
13

1
13

( ) + +

( ) ( )

 →

+( ) − +( )

Ω Ω Ω

Ω Ω Ω Ωsin

where DQx
13( ) ≡ −( )1

2 1 3 1 32 2I I I Ix x y y .  This evolution is analogous to that of a

single spin where y rotates towards –x.

As is also shown in section 6.9, DQ  and DQ13 13
y x
( ) ( )  do not evolve under the

coupling between spins 1 and 3, but they do evolve under the sum of the
couplings between these two and all other spins; in this case this is simply
(J12+J23).  Taking each term in turn

B t

B t J J t

B t J J t I

B

y
J t I I J t I I

y

z x

z z z z

13 3 1
2 2

13 3 1 12 23 1

13 3 1 12 23 1 2

13

12 1 1 2 23 1 2 3

2

cos DQ

cos cos DQ

cos sin DQ

1
13

1
13

1
13

Ω Ω

Ω Ω

Ω Ω

+( )  →

+( ) +( )
− +( ) +( )

−

( ) +

( )

( )

π π

π

π

sin ΩΩ Ω

Ω Ω

Ω Ω

1
13

1
13

1
13

DQ

cos DQ

DQ

+( )  →

− +( ) +( )
− +( ) +( )

( ) +

( )

( )

3 1
2 2

13 3 1 12 23 1

13 3 1 12 23 1 2

12 1 1 2 23 1 2 3

2

t

B t J J t

B t J J t I

x
J t I I J t I I

x

z y

z z z zπ π

π

π

sin

sin sin

Terms such as 2 22 2I Iz y z xDQ  and DQ13 13( ) ( )  can be thought of as double-quantum
coherence which has become "anti-phase" with respect to the coupling to spin
2; such terms are directly analogous to single-quantum anti-phase
magnetization.

Of all the terms present at the end of t1, only DQ 13
y
( ) is rendered observable

by the final pulse

cos cos DQ

cos cos

1
13

1

Ω Ω

Ω Ω

+( ) +( )  →

+( ) +( ) +[ ]
( ) + +( )

3 1 12 23 1 13
2

3 1 12 23 1 13 1 3 1 3

1 2 3

2 2

t J J t B

t J J t B I I I I

y
I I I

x z z x

x x xπ

π

π

The calculation predicts that two two-dimensional multiplets appear in the
spectrum.  Both have the same structure in F1, namely an in–phase doublet,
split by (J12 + J23) and centred at (Ω1 + Ω3); this is analogous to a normal
multiplet.  In F2 one two-dimensional multiplet is centred at the offset of spins
1, Ω1, and one at the offset of spin 3, Ω3; both multiplets are anti-phase with
respect to the coupling J13.  Finally, the overall amplitude, B13, depends on the
delay ∆ and all the couplings in the system.  The schematic spectrum is shown
opposite.  Similar multiplet structures are seen for the double-quantum between
spins 1 & 2 and spins 2 & 3.

F1

F2
1Ω 3Ω

+1Ω 3Ω

Schematic two-dimensional
double quantum spectrum
showing the multiplets arising
from evolution of double-
quantum coherence between
spins 1 and 3.  If has been
assumed that J12 > J 13 > J 23.
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7.5.2 Interpretation of double-quantum spectra

The double-quantum spectrum shows the relationship between the frequencies
of the lines in the double quantum spectrum and those in the (conventional)
single-quantum spectrum.  If two two-dimensional multiplets appear at (F1, F2)
= (ΩA + ΩB, ΩA) and (ΩA + ΩB, ΩB) the implication is that the two spins A and
B are coupled, as it is only if there is a coupling present that double-quantum
coherence between the two spins can be generated (e.g. in the previous section,
if J13 = 0 the term B13, goes to zero).  The fact that the two two-dimensional
multiplets share a common F1 frequency and that this frequency is the sum of
the two F2 frequencies constitute a double check as to whether or not the peaks
indicate that the spins are coupled.

Double quantum spectra give very similar information to that obtained from
COSY i.e. the identification of coupled spins.  Each method has particular
advantages and disadvantages:

(1)  In COSY the cross-peak multiplet is anti-phase in both dimensions,
whereas in a double-quantum spectrum the multiplet is only anti-phase in F2.
This may lead to stronger peaks in the double-quantum spectrum due to less
cancellation.  However, during the two delays ∆ magnetization is lost by
relaxation, resulting in reduced peak intensities in the double-quantum
spectrum.

(2)  The value of the delay ∆ in the double-quantum experiment affects the
amount of multiple-quantum generated and hence the intensity in the spectrum.
All of the couplings present in the spin system affect the intensity and as
couplings cover a wide range, no single optimum value for ∆ can be given.  An
unfortunate choice for ∆ will result in low intensity, and it is then possible that
correlations will be missed.  No such problems occur with COSY.

(3)  There are no diagonal-peak multiplets in a double-quantum spectrum, so
that correlations between spins with similar offsets are relatively easy to locate.
In contrast, in a COSY the cross-peaks from such a pair of spins could be
obscured by the diagonal.

(4)  In more complex spin systems the interpretation of a COSY remains
unambiguous, but the double-quantum spectrum may show a peak with F1 co-
ordinate (ΩA + ΩB) and F2 co-ordinate ΩA (or ΩB) even when spins A and B are
not coupled.  Such remote peaks, as they are called, appear when spins A and B
are both coupled to a third spin.  There are various tests that can differentiate
these remote from the more useful direct peaks, but these require additional
experiments.  The form of these remote peaks in considered in the next section.

On the whole, COSY is regarded as a more reliable and simple experiment,
although double-quantum spectroscopy is used in some special circumstances.

7.5.3 Remote peaks in double-quantum spectra

The origin of remote peaks can be illustrated by returning to the calculation of
section 7.5.1. and focusing on the doubly anti-phase term which is present at

F1

F2

AΩ BΩ

+AΩ BΩ

Schematic spectrum showing
the relationship between the
single- and double-quantum
frequencies for coupled spins.
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the end of the spin echo (the fourth term in Eqn. [3.1])

sin sinπ πJ J I I Iy z z13 12 1 2 34∆ ∆

The 90° pulse rotates this into multiple-quantum

sin sin sin sinπ π π ππJ J I I I J J I I Iy z z
I I I

z y y
x x x

13 12 1 2 3
2

13 12 1 2 34 41 2 3∆ ∆ ∆ ∆+ +( ) →

The pure double-quantum part of this term is

− −( ) ≡ ( )1
2 13 12 1 2 3 1 2 3 23 1 1

234 4 2sin sin ,π πJ J I I I I I I B I DQz x x z y y z x
∆ ∆

In words, what has been generated in double-quantum between spins 2 and 3,
anti-phase with respect to spin 1.  The key thing is that no coupling between
spins 2 and 3 is required for the generation of this term – the intensity just
depends on J12 and J13; all that is required is that both spins 2 and 3 have a
coupling to the third spin, spin 1.

During t1 this term evolves under the influence of the offsets and the
couplings. Only two terms ultimately lead to observable signals; at the end of t1

these two terms are

B t J J t I DQ

B t J J t DQ

z x

y

23 1 3 1 12 13 1 1
23

23 1 3 1 12 13 1
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π

and after the final 90° pulse the observable parts are

B t J J t I I I

B t J J t I I I I

y z z

x z z x
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23 1 3 1 12 13 1 2 3 2 3
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2 2
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π

π

The first term results in a multiplet appearing at Ω1 in F2 and at (Ω2 + Ω3) in F1.
The multiplet is doubly anti-phase (with respect to the couplings to spins 2 and
3) in F2; in F1 it is in-phase with respect to the sum of the couplings J12 and J13.
This multiplet is a remote peak, as its frequency coordinates do not conform to
the simple pattern described in section 7.5.2.  It is distinguished from direct
peaks not only by its frequency coordinates, but also by having a different
lineshape in F2 to direct peaks and by being doubly anti-phase in that
dimension.

The second and third terms are anti-phase with respect to the coupling
between spins 2 and 3, and if this coupling is zero there will be cancellation
within the multiplet and no signals will be observed.  This is despite the fact
that multiple-quantum coherence between these two spins has been generated.

7.6 Advanced topic:
Lineshapes and frequency discrimination

This is a somewhat involved topic which will only be possible to cover in
outline here.

2I2zI3x

Ω3

J23

J23
decreasing

J23 = 0

J13

Illustration of how the intensity
of an anti-phase multiplet
decreases as the coupling
which it is in anti-phase with
respect to decreases.  The in-
phase multiplet is shown at the
top, and below are three
versions of the anti-phase
multiplet for successively
decreasing values of J23.
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7.6.1 One-dimensional spectra

Suppose that a 90°(y) pulse is applied to equilibrium magnetization resulting in
the generation of pure x-magnetization which then precesses in the transverse
plane with frequency Ω.  NMR spectrometers are set up to detect the x- and y-
components of this magnetization.  If it is assumed (arbitrarily) that these
components decay exponentially with time constant T2 the resulting signals,
S t S tx y( ) ( ) and , from the two channels of the detector can be written

S t t t T S t t t Tx y( ) = −( ) ( ) = −( )γ γcos exp sin expΩ Ω2 2

where γ is a factor which gives the absolute intensity of the signal.

Usually, these two components are combined in the computer to give a
complex time-domain signal, S(t)

S t S t iS t

t i t t T

i t t T

x y( ) = ( ) + ( )
= +( ) −( )
= ( ) −( )

γ

γ

cos sin exp

exp exp

Ω Ω

Ω
2

2

[7.2]

The Fourier transform of S(t) is also a complex function, S(ω):

S FT S t

A iD

ω

γ ω ω

( ) = ( )[ ]
= ( ) + ( ){ }

where A(ω) and D(ω) are the absorption and dispersion Lorentzian lineshapes:

A
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D
T

T
ω

ω
ω

ω
ω

( ) =
−( ) +

( ) =
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−( ) +
1

1 12
2
2

2
2

2
2Ω

Ω
Ω

These lineshapes are illustrated opposite.  For NMR it is usual to display the
spectrum with the absorption mode lineshape and in this case this corresponds
to displaying the real part of S(ω).

7.6.1.1 Phase

Due to instrumental factors it is almost never the case that the real and
imaginary parts of S(t) correspond exactly to the x- and y-components of the
magnetization.  Mathematically, this is expressed by multiplying the ideal
function by an instrumental phase factor, φinstr

S t i i t t T( ) = ( ) ( ) −( )γ φexp exp expinstr Ω 2

The real and imaginary parts of S(t) are

Re cos cos sin sin exp

Im cos sin sin cos exp

S t t t t T

S t t t t T

( )[ ] = −( ) −( )
( )[ ] = +( ) −( )

γ φ φ

γ φ φ
instr instr

instr instr

Ω Ω

Ω Ω
2

2

Clearly, these do not correspond to the x– and y-components of the ideal time-
domain function.

The Fourier transform of S(t) carries forward the phase term

S i A iDω γ φ ω ω( ) = ( ) ( ) + ( ){ }exp instr

All modern spectrometers use a
method know as quadrature
d e t e c t i o n , which in effect
means that both the x- and y-
c o m p o n e n t s  o f  t h e
magnetization are detected
simultaneously.

Ω

ω

ω

Absorpt ion (above) and
dispersion (below) Lorentzian
l ineshapes,  centred at
frequency Ω.
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The real and imaginary parts of S(ω ) are no longer the absorption and
dispersion signals:

Re cos sin

Im cos sin

S A D

S D A

ω γ φ ω φ ω

ω γ φ ω φ ω

( )[ ] = ( ) − ( )( )
( )[ ] = ( ) + ( )( )

instr instr

instr instr

Thus, displaying the real part of S(ω) will not give the required absorption
mode spectrum; rather, the spectrum will show lines which have a mixture of
absorption and dispersion lineshapes.

Restoring the pure absorption lineshape is simple. S(ω) is multiplied, in the
computer, by a phase correction factor, φcorr:

S i i i A iD

i A iD

ω φ γ φ φ ω ω

γ φ φ ω ω

( ) ( ) = ( ) ( ) ( ) + ( ){ }
= +( )( ) ( ) + ( ){ }

exp exp exp

exp

corr corr instr

corr instr

By choosing φcorr such that (φcorr + φinst) = 0 (i.e. φcorr = – φinstr) the phase terms
disappear and the real part of the spectrum will have the required absorption
lineshape.  In practice, the value of the phase correction is set "by eye" until the
spectrum "looks phased".  NMR processing software also allows for an
additional phase correction which depends on frequency; such a correction is
needed to compensate for, amongst other things, imperfections in
radiofrequency pulses.

7.6.1.2 Phase is arbitrary

Suppose that the phase of the 90° pulse is changed from y  to x.  T h e
magnetization now starts along –y and precesses towards x; assuming that the
instrumental phase is zero, the output of the two channels of the detector are

S t t t T S t t t Tx y( ) = −( ) ( ) = − −( )γ γsin exp cos expΩ Ω2 2

The complex time-domain signal can then be written

S t S t iS t

t i t t T

i t i t t T

i i t t T

i i t t T

x y( ) = ( ) + ( )
= −( ) −( )

−( ) +( ) −( )
= −( ) ( ) −( )
= ( ) ( ) −( )
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γ φ

sin cos exp

cos sin exp

exp exp

exp exp exp

Ω Ω

Ω Ω

Ω

Ω

2

2

2

2exp

Where φ e x p , the "experimental" phase, is –π /2 (recall that
exp cos sini iφ φ φ( ) = + , so that exp(–i π/2) = –i).

It is clear from the form of S(t) that this phase introduced by altering the
experiment (in this case, by altering the phase of the pulse) takes exactly the
same form as the instrumental phase error.  It can, therefore, be corrected by
applying a phase correction so as to return the real part of the spectrum to the
absorption mode lineshape. In this case the phase correction would be π/2.

The Fourier transform of the original signal is
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S i A iD

S D S A

ω γ ω ω

ω γ ω ω γ ω

( ) = −( ) ( ) + ( ){ }
( )[ ] = ( ) ( )[ ] = − ( )Re Im

Thus the real part shows the dispersion mode lineshape, and the imaginary part
shows the absorption lineshape.  The 90° phase shift simply swaps over the real
and imaginary parts.

7.6.1.3 Relative phase is important

The conclusion from the previous two sections is that the lineshape seen in the
spectrum is under the control of the spectroscopist.  It does not matter, for
example, whether the pulse sequence results in magnetization appearing along
the x- or y- axis (or anywhere in between, for that matter).  It is always possible
to phase correct the spectrum afterwards to achieve the desired lineshape.

However, if an experiment leads to magnetization from different processes
or spins appearing along different axes, there is no single phase correction
which will put the whole spectrum in the absorption mode.  This is the case in
the COSY spectrum (section 7.4.1).  The terms leading to diagonal-peaks
appear along the x-axis, whereas those leading to cross-peaks appear along y.
Either can be phased to absorption, but if one is in absorption, one will be in
dispersion; the two signals are fundamentally 90° out of phase with one
another.

7.6.1.4 Frequency discrimination

Suppose that a particular spectrometer is only capable of recording one, say the
x-, component of the precessing magnetization.  The time domain signal will
then just have a real part (compare Eqn. [7.2] in section 7.6.1)

S t t t T( ) = −( )γ cos expΩ 2

Using the identity cos exp expθ θ θ= ( ) + −( )( )1
2 i i  this can be written

S t i t i t t T

i t t T i t t T

( ) = ( ) + ( )[ ] −( )
= ( ) −( ) + ( ) −( )

1
2 2

1
2 2

1
2 2

γ

γ γ

exp exp – exp

exp exp exp – exp

Ω Ω

Ω Ω
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The Fourier transform of the first term gives, in the real part, an absorption
mode peak at ω = +Ω; the transform of the second term gives the same but at ω
= –Ω.

Re[ ] –S A Aω γ γ( ) = ++
1
2

1
2

where A+ represents an absorption mode Lorentzian line at ω  = +Ω  and A–

represents the same at ω = –Ω; likewise, D+ and D– represent dispersion mode
peaks at +Ω and –Ω, respectively.

This spectrum is said to lack frequency discrimination, in the sense that it
does not matter if the magnetization went round at +Ω or –Ω, the spectrum still
shows peaks at both +Ω and –Ω.  This is in contrast to the case where both the
x- and y-components are measured where one peak appears at either positive or
negative ω depending on the sign of Ω.

The lack of frequency discrimination is associated with the signal being
modulated by a cosine wave, which has the property that cos(Ωt)  = cos(–Ωt),
as opposed to a complex exponential, exp(iΩt) which is sensitive to the sign of
Ω.  In one-dimensional spectroscopy it is virtually always possible to arrange
for the signal to have this desirable complex phase modulation, but in the case
of two-dimensional spectra it is almost always the case that the signal
modulation in the t1 dimension is of the form cos(Ωt1) and so such spectra are
not naturally frequency discriminated in the F1 dimension.

Suppose now that only the y-component of the precessing magnetization
could be detected.  The time domain signal will then be (compare Eqn. [3.2] in
section 7.6.1)

S t i t t T( ) = −( )γ sin expΩ 2

Using the identity sin exp expθ θ θ= ( ) − −( )( )1
2i i i  this can be written

S t i t i t t T

i t t T i t t T

( ) = ( ) − ( )[ ] −( )
= ( ) −( ) − ( ) −( )

1
2 2

1
2 2

1
2 2

γ

γ γ

exp exp – exp

exp exp exp – exp

Ω Ω

Ω Ω

and so

Re[ ] –S A Aω γ γ( ) = −+
1
2

1
2

This spectrum again shows two peaks, at ±Ω, but the two peaks have opposite
signs; this is associated with the signal being modulated by a sine wave, which
has the property that sin(–Ωt)  = – sin(Ωt).  If the sign of Ω changes the two
peaks swap over, but there are still two peaks.  In a sense the spectrum is
frequency discriminated, as positive and negative frequencies can be
distinguished, but in practice in a spectrum with many lines with a range of
positive and negative offsets the resulting set of possibly cancelling peaks
would be impossible to sort out satisfactorily.

ω + 0 –

ω + 0 –

ω + 0 –

a

b

c

Spectrum a  has peaks at
pos i t i ve  and negat ive
frequencies and is frequency
discriminated.  Spectrum b
resul ts f rom a cosine
modulated time-domain data
set; each peak appears at both
pos i t i ve  and negat ive
frequency, regardless of
whether its real offset is
positive or negative.  Spectrum
c results from a sine modulated
data set; like b  each peak
appears twice, but with the
added complication that one
peak is inverted.  Spectra b and
c lack frequency discrimination
and are quite uninterpretable as
a result.
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7.6.2 Two-dimensional spectra

7.6.2.1 Phase and amplitude modulation

There are two basic types of time-domain signal that are found in two-
dimensional experiments.  The first is phase modulation, in which the evolution
in t1 is encoded as a phase, i.e. mathematically as a complex exponential

S t t i t t T i t t T1 2 1 1 1 2
1

2 2 2 2
2, exp exp exp exp( ) = ( ) −( ) ( ) −( )( ) ( )

phase
γ Ω Ω

where Ω1 and Ω2 are the modulation frequencies in t1 and t2 respectively, and
T2

1( ) and T2
2( ) are the decay time constants in t1 and t2 respectively.

The second type is amplitude modulation, in which the evolution in t1 is
encoded as an amplitude, i.e. mathematically as sine or cosine

S t t t T i t t T

S t t t T i t t T

c

s

( ) = ( ) −( ) ( ) −( )
( ) = ( ) −( ) ( ) −( )

( ) ( )

( ) ( )

γ

γ

cos exp exp exp

sin exp exp exp

Ω Ω

Ω Ω

1 1 1 2
1

2 2 2 2
2

1 1 1 2
1

2 2 2 2
2

Generally, two-dimensional experiments produce amplitude modulation, indeed
all of the experiments analysed in this chapter have produced either sine or
cosine modulated data.  Therefore most two-dimensional spectra are
fundamentally not frequency discriminated in the F1 dimension.  As explained
above for one-dimensional spectra, the resulting confusion in the spectrum is
not acceptable and steps have to be taken to introduce frequency discrimination.

It will turn out that the key to obtaining frequency discrimination is the
ability to record, in separate experiments, both sine and cosine modulated data
sets.  This can be achieved by simply altering the phase of the pulses in the
sequence.

For example, consider the EXSY sequence analysed in section 7.2 .  The
observable signal, at time t2 = 0, can be written

1 1 1 1 1 1 2−( ) +f t I f t Iy ycos cosΩ Ω

If, however, the first pulse in the sequence is changed in phase from x to y the
corresponding signal will be

− −( ) −1 1 1 1 1 1 2f t I f t Iy ysin sinΩ Ω

i.e. the modulation has changed from the form of a cosine to sine.  In COSY
and DQF COSY a similar change can be brought about by altering the phase of
the first 90° pulse.  In fact there is a general procedure for effecting this change,
the details of which are given in a later chapter.

7.6.2.2 Two-dimensional lineshapes

The spectra resulting from two-dimensional Fourier transformation of phase
and amplitude modulated data sets can be determined by using the following
Fourier pair

FT i t t T A iDexp expΩ( ) −( )[ ] = ( ) + ( ){ }2 ω ω
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where A and D are the dispersion Lorentzian lineshapes described in section
7.6.1

Phase modulation

For the phase modulated data set the transform with respect to t2 gives

S t i t t T A iD1 2 1 1 1
1 2 2

2
, exp expω γ( ) = ( ) −( ) +[ ]( )

+
( )

+
( )

phase
Ω

where A+
( )2  indicates an absorption mode line in the F2 dimension at ω2 = +Ω2

and with linewidth set by T2
2( ); similarly D+

( )2  is the corresponding dispersion
line.

The second transform with respect to t1 gives

S A iD A iDω ω γ1 2
1 1 2 2,( ) = +[ ] +[ ]+

( )
+
( )

+
( )

+
( )

phase

where A+
( )1  indicates an absorption mode line in the F1 dimension at ω1 = +Ω1

and with linewidth set by T2
1( ); similarly D+

( )1  is the corresponding dispersion
line.

The real part of the resulting two-dimensional spectrum is

Re ,S A A D Dω ω γ1 2
1 2 1 2( )[ ] = −( )+

( )
+
( )

+
( )

+
( )

phase

This is a single line at (ω1,ω2) = (+Ω1,+Ω2) with the phase-twist lineshape,
illustrated below.

Pseudo 3D view and contour plot of the phase-twist lineshape.

The phase-twist lineshape is an inextricable mixture of absorption and
dispersion; it is a superposition of the double absorption and double dispersion
lineshape (illustrated in section 7.4.1).  No phase correction will restore it to
pure absorption mode.  Generally the phase twist is not a very desirable
lineshape as it has both positive and negative parts, and the dispersion
component only dies off slowly.

Cosine amplitude modulation

For the cosine modulated data set the transform with respect to t2 gives

S t t t T A iD
c1 2 1 1 1 2

1 2 2, cos expω γ( ) = ( ) −( ) +[ ]( )
+
( )

+
( )Ω

The cosine is then rewritten in terms of complex exponentials to give
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S t i t i t t T A iD1 2
1
2 1 1 1 1 1 2

1 2 2, exp exp expω γ( ) = ( ) + −( )[ ] −( ) +[ ]( )
+
( )

+
( )

c
Ω Ω

The second transform with respect to t1 gives

S A iD A iD A iDω ω γ1 2
1
2

1 1 1 1 2 2,( ) = +{ } + +{ }[ ] +[ ]+
( )

+
( )

−
( )

−
( )

+
( )

+
( )

c

where A−
( )1  indicates an absorption mode line in the F1 dimension at ω1 = –Ω1

and with linewidth set by T
2

1( ) ; similarly D–
1( ) is the corresponding dispersion

line.

The real part of the resulting two-dimensional spectrum is

Re ,S A A D D A A D Dω ω γ γ1 2
1
2

1 2 1 2 1
2

1 2 1 2( )[ ] = −( ) + −( )+
( )

+
( )

+
( )

+
( )

−
( )

+
( )

−
( )

+
( )

c

This is a two lines, both with the phase-twist lineshape; one is located at
(+Ω1,+Ω2) and the other is at (–Ω1,+Ω2).  As expected for a data set which is
cosine modulated in t1 the spectrum is symmetrical about ω1 = 0.

A spectrum with a pure absorption mode lineshape can be obtained by
discarding the imaginary part of the time domain data immediately after the
transform with respect to t2; i.e. taking the real part of S t

c1 2,ω( )
S t S t

t t T A

c c1 2 1 2

1 1 1 2
1 2

, Re ,

cos exp

ω ω

γ

( ) = ( )[ ]
= ( ) −( )( )

+
( )

Re

Ω

Following through the same procedure as above:

S t i t i t t T A
c1 2

1
2 1 1 1 1 1 2

1 2, exp exp expω γ( ) = ( ) + −( )[ ] −( )( )
+
( )Re Ω Ω

S A iD A iD A
c

ω ω γ1 2
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The real part of the resulting two-dimensional spectrum is

Re ,
Re

S A A A A
c

ω ω γ γ1 2
1
2

1 2 1
2

1 2( )[ ] = ++
( )

+
( )

−
( )

+
( )

This is two lines, located at (+Ω1,+Ω2) and (–Ω1,+Ω2), but in contrast to the
above both have the double absorption lineshape.  There is still lack of
frequency discrimination, but the undesirable phase-twist lineshape has been
avoided.

Sine amplitude modulation

For the sine modulated data set the transform with respect to t2 gives

S t t t T A iD1 2 1 1 1 2
1 2 2, sin expω γ( ) = ( ) −( ) +[ ]( )

+
( )

+
( )

s
Ω

The cosine is then rewritten in terms of complex exponentials to give

S t i t i t t T A iDi1 2
1
2 1 1 1 1 1 2

1 2 2, exp exp expω γ( ) = ( ) − −( )[ ] −( ) +[ ]( )
+
( )

+
( )

s
Ω Ω

The second transform with respect to t1 gives

S A iD A iD A iDiω ω γ1 2
1
2

1 1 1 1 2 2,( ) = +{ } − +{ }[ ] +[ ]+
( )

+
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−
( )

−
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+
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s

The imaginary part of the resulting two-dimensional spectrum is
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This is two lines, both with the phase-twist lineshape but with opposite signs;
one is located at (+Ω1,+Ω2) and the other is at (–Ω1,+Ω2).  As expected for a
data set which is sine modulated in t1 the spectrum is anti-symmetric about ω1 =
0.

As before, a spectrum with a pure absorption mode lineshape can be
obtained by discarding the imaginary part of the time domain data immediately
after the transform with respect to t2; i.e. taking the real part of S t1 2,ω( )s

S t S t

t t T A

s s1 2 1 2

1 1 1
1 2

2

, Re ,
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Reω ω
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Following through the same procedure as above:
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1
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The imaginary part of the resulting two-dimensional spectrum is
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2
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+
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+
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s

Re

The two lines now have the pure absorption lineshape.

7.6.2.3 Frequency discrimination with retention of absorption lineshapes

It is essential to be able to combine frequency discrimination in the F 1

dimension with retention of pure absorption lineshapes.  Three different ways
of achieving this are commonly used; each will be analysed here.

States-Haberkorn-Ruben method

The essence of the States-Haberkorn-Ruben (SHR) method is the observation
that the cosine modulated data set, processed as described in section 7.6.1.2,
gives two positive absorption mode peaks at (+Ω1,+Ω2) and (–Ω1,+Ω2), whereas
the sine modulated data set processed in the same way gives a spectrum in
which one peak is negative and one positive.  Subtracting these spectra from
one another gives the required absorption mode frequency discriminated
spectrum (see the diagram below):
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In practice it is usually more convenient to achieve this result in the following
way, which is mathematically identical.

The cosine and sine data sets are transformed with respect to t2 and the real
parts of each are taken.  Then a new complex data set is formed using the
cosine data for the real part and the sine data for the imaginary part:

S t S t iS t

t t T A i t t T A

i t t T A

1 2 1 2 1 2

1 1 1
1 2

1 1 1
1 2

1 1 1
1 2

2 2

2

, , ,

cos exp sin exp

exp exp

ω ω ω

γ γ

γ

( ) = ( ) + ( )
= ( ) −( ) + ( ) −( )
= ( ) −( )

( )
+
( ) ( )

+
( )

( )
+
( )

SHR

Re Re

c s

Ω Ω

Ω

Fourier transformation with respect to t1 gives a spectrum whose real part
contains the required frequency discriminated absorption mode spectrum

S A iD A

A A iD A

ω ω γ
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1 2
1 1 2

1 2 1 2

,( ) = +[ ]
= +

+
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+
( )

+
( )

+
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+
( )

+
( )

+
( )

SHR

Marion-Wüthrich or TPPI method

The idea behind the TPPI (time proportional phase incrementation) or
Marion–Wüthrich (MW) method is to arrange things so that all of the peaks
have positive offsets.  Then, frequency discrimination would not be required as
there would be no ambiguity.

One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum.  Simple though this is, it is
not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the spectrum,
but it is made to appear that all the frequencies are positive by phase shifting
systematically some of the pulses in the sequence in concert with the
incrementation of t1.

In section 7.2 it was shown that in the EXSY sequence the cosine
modulation in t1, cos(Ω1t1), could be turned into sine modulation, – sin(Ω1t1), by
shifting the phase of the first pulse by 90°.  The effect of such a phase shift can
be represented mathematically in the following way.

Recall that Ω  is in units of radians s–1, and so if t is in seconds Ω t is in
radians; Ωt can therefore be described as a phase which depends on time.  It is
also possible to consider phases which do not depend on time, as was the case
for the phase errors considered in section 7.6.1.1

The change from cosine to sine modulation in the EXSY experiment can be
though of as a phase shift of the signal in t1.  Mathematically, such a phase
shifted cosine wave is written as cos Ω1 1t +( )φ , where φ is the phase shift in
radians.  This expression can be expanded using the well known formula
cos cos cos sin sinA B A B A B+( ) = −  to give

1ω

2ω

0

cosine

sine

difference

– +1Ω+1Ω–

2Ω

1Ω+1Ω–

1Ω+

Illustration of the way in which
the SHR method achieves
frequency discrimination by
combining cosine and sine
modulated spectra.
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cos cos cos sin sinΩ Ω Ω1 1 1 1t t t+( ) = −φ φ φ
If the phase shift, φ, is π/2 radians the result is

cos cos cos sin sin

sin

Ω Ω Ω
Ω

1 1 1 1

1

2 2 2t t t

t

+( ) = −
= −

π π π

In words, a cosine wave, phase shifted by π/2 radians (90°) is the same thing as
a sine wave.  Thus, in the EXSY experiment the effect of changing the phase of
the first pulse by 90° can be described as a phase shift of the signal by 90°.

Suppose that instead of a fixed phase shift, the phase shift is made
proportional to t1; what this means is that each time t1 is incremented the phase
is also incremented in concert.  The constant of proportion between the time
dependent phase, φ(t1), and t1 will be written ωadditional

φ ωt t1 1( ) = additional

Clearly the units of ωadditional are radians s–1, that is ωadditional is a frequency.  The
new time-domain function with the inclusion of this incrementing phase is thus

cos cos

cos

Ω Ω

Ω
1 1 1 1 1 1

1 1

t t t t

t

+ ( )( ) = +( )
= +( )

φ ω

ω
additional

additional

In words, the effect of incrementing the phase in concert with t1 is to add a
frequency ω additional  to all of the offsets in the spectrum.  The TPPI method
utilizes this option of shifting all the frequencies in the following way.

In one-dimensional pulse-Fourier transform NMR the free induction signal is
sampled at regular intervals ∆.  After transformation the resulting spectrum
displays correctly peaks with offsets in the range –(SW/2) to +(SW/2) where SW
is the spectral width which is given by 1/∆ (this comes about from the Nyquist
theorem of data sampling).  Frequencies outside this range are not represented
correctly.

Suppose that the required frequency range in the F1 dimension is from
–(SW1/2) to +(SW1/2) (in COSY and EXSY this will be the same as the range in
F2).  To make it appear that all the peaks have a positive offset, it will be
necessary to add (SW1/2) to all the frequencies.  Then the peaks will be in the
range 0 to (SW1).

As the maximum frequency is now (SW1) rather than (SW1/2) the sampling
interval, ∆1, will have to be halved i.e. ∆1 = 1/(2SW1) in order that the range of
frequencies present are represented properly.

The phase increment is ω additionalt1, but t1 can be written as n∆1 for the nth
increment of t1.  The required value for ω additional  is 2π(SW1/2) , where the 2π is
to convert from frequency (the units of SW1) to rad s–1, the units of ω additional .
Putting all of this together ω additionalt1 can be expressed, for the nth increment as

0 +SW1/2–SW1/2

0 +SW1

a

b

c

0 +SW1–SW1

Illustration of the TPPI method.
The normal spectrum is shown
in a , with peaks in the range
–SW/2 to +SW/2.  Adding a
frequency of S W/2 to all the
peaks gives them all positive
offsets, but some, shown
dotted) will then fall outside the
spectral window – spectrum b.
If the spectral width is doubled
all peaks are represented
correctly – spectrum c.
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The way in which the phase incrementation increases the frequency of the
cosine wave is shown below:

time

The open circles lie on a cosine wave, cos(Ω × n∆ ), where ∆ is the sampling interval and n runs 0, 1, 2 ...
The closed circles lie on a cosine wave in which an additional phase is incremented on each point i.e. the
function is cos(Ω × n∆ + n φ); here φ = π/8.  The way in which this phase increment increases the frequency
of the cosine wave is apparent.

In words this means that each time t1 is incremented, the phase of the signal
should also be incremented by 90°, for example by incrementing the phase of
one of the pulses.  The way in which it can be decided which pulse to increment
will be described in a later chapter.

A data set from an experiment to which TPPI has been applied is simply
amplitude modulated in t1 and so can be processed according to the method
described for cosine modulated data so as to obtain absorption mode lineshapes.
As the spectrum is symmetrical about F1 = 0 it is usual to use a modified
Fourier transform routine which saves effort and space by only calculating the
positive frequency part of the spectrum.

Echo anti-echo method

Few two-dimensional experiments naturally produce phase modulated data sets,
but if gradient pulses are used for coherence pathway selection it is then quite
often found that the data are phase modulated.  In one way this is an advantage,
as it means that no special steps are required to obtain frequency discrimination.
However, phase modulated data sets give rise to spectra with phase-twist
lineshapes, which are very undesirable.  So, it is usual to attempt to use some
method to eliminate the phase-twist lineshape, while at the same time retaining
frequency discrimination.

The key to how this can be done lies in the fact that two kinds of phase
modulated data sets can usually be recorded.  The first is called the P-type or

t1 = 0

t2
x

t1 = ∆
t2

y

t1 = 2∆
t2

–x

t1 = 3∆
t2

–y

t1 = 4∆
t1

t2
x

TPPI phase incrementation
applied to a COSY sequence.
The phase of the first pulse is
incremented by 90° each time t1
is incremented.
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anti-echo spectrum

S t t i t t T i t t T1 2 1 1 1
1

2 2 2
2

2 2
, exp exp exp exp( ) = ( ) −( ) ( ) −( )( ) ( )

P
γ Ω Ω

the "P" indicates positive, meaning here that the sign of the frequencies in F1

and F2 are the same.

The second data set is called the echo or N-type

S t t i t t T i t t T1 2 1 1 1
1

2 2 2
2

2 2
, exp – exp exp exp( ) = ( ) −( ) ( ) −( )( ) ( )

N
γ Ω Ω

the "N" indicates negative, meaning here that the sign of the frequencies in F1

and F2 are opposite.  As will be explained in a later chapter in gradient
experiments it is easy to arrange to record either the P- or N-type spectrum.

The simplest way to proceed is to compute two new data sets which are the
sum and difference of the P- and N-type data sets:
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These two combinations are just the cosine and sine modulated data sets that
are the inputs needed for the SHR method.  The pure absorption spectrum can
therefore be calculated in the same way starting with these combinations.

7.6.2.4 Phase in two-dimensional spectra

In practice there will be instrumental and other phase shifts, possibly in both
dimensions, which mean that the time-domain functions are not the idealised
ones treated above.  For example, the cosine modulated data set might be
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where φ1 and φ2 are the phase errors in F1 and F1, respectively.  Processing this
data set in the manner described above will not give a pure absorption
spectrum.  However, it is possible to recover the pure absorption spectrum by
software manipulations of the spectrum, just as was described for the case of
one-dimensional spectra.  Usually, NMR data processing software provides
options for making such phase corrections to two-dimensional data sets.


